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Abstract: The article deals with the well known Rückert – Lefschetz scheme of inves-
tigation of implicit functions that are defined with finite systems f(x) = 0 of equations
with analytical left hand sides. It is proved that this scheme is not effective. This
means that this scheme does not allow to define jets of implicit functions using only
jets of left hand sides of equations under considerations even for structurally stable
systems of equations (although it allows to describe the possible structure of the set
of implicit functions). There is presented some modification of the Rükkert-Lefshetz
scheme which, in basic cases, allows to define jets of implicit functions using only jets
of left hand sides of equations under considerations even for structurally stable systems
of equations.
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1 Introduction

Let us consider a finite system of the equations
f1(λ, x1, . . . , xm) = 0,
. . . . . . . . . . . . . . . . . . . . .
fn(λ, x1, . . . , xm) = 0,

(1)

where the parameter λ and the unknowns x1, . . . , xm are the real or complex numbers
and fj(λ, x1, . . . , xm) (j = 1, . . . , n) are the real or complex valued functions. System
(1) can be shown as

f(λ, x) = 0, (2)

where f(·, ·) is a map of R× Rm to Rm or C× Cm to Cm.
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Suppose

f(λ0, x0) = 0.

In different analysis problems (the differential and integral equations, the meth-
ods of optimization and etc) it often appears the following question: when does
System (2) define in a local neighborhood of the point (λ0, x0) (or in some part of
this neighborhood) one or several continuous functions x(λ) at the point λ0 such
that x(λ0) = x0? This functions are often called implicit functions or small solutions
of System (1).

The classical theorem about the implicit functions is well-known [4, 10]: if m =
n, f(λ, x0) is a continuous function at the point λ0, f

′
x(λ, x) is a continuous function

at the point (λ0, x0) and f ′x(λ0, x0)
−1 also exists, then System (2) has the unique

solution x = x∗(λ) in a small neighborhood of the point (λ0, x0). This case is called
nondegenerated. If f ′x(λ0, x0) is an irreversible matrix, then the such case is called
degenerated.

The analysis of the degenerated cases is a difficult problem. The basic results
concern to the case when fj(λ, x1, . . . , xm) (j = 1, . . . , n) are analytical functions
in a neighborhood of the point (λ0, x0) (see, for example, [8, 2, 4]); some of these
results are extended to the case when the functions fj(λ, x1, . . . , xm) are smooth
enough.

Depending on what of the cases m = n, m > n, m < n takes place, it is
said that System (1) is determined, underdetermined and overdetermined. It seems
that the determined systems should define the finite number of the solutions x(λ),
underdetermined ones should define the infinite number of such solutions and the
overdetermined ones should not define the such solutions in general. However the
distinction between these three types of the systems is conditional. So if we add
one or several equation so that the number of equations became the same with the
number of unknowns then the underdetermined system became be determined. The
overdetermined systems also can be considered as the determined systems if the left
parts of its equations depend on also n−m unknowns xm+1, . . . , xn.

In the article (if it is not stipulated the opposite) the case when the parameter
λ and the unknowns x1, . . . , xm take the complex values is considered. There are
situations when the founded solutions ¡¡branch¿¿ at the point λ0. To avoid the
consideration of the multiple-valued functions in the such cases it is natural to
consider the implicit functions defined by the system (1) in the neighborhood of the
point λ0 with a cross-cut. The case when the parameter λ and unknowns x1, . . . , xm
take real values will be in details considered in the second part of this article.

Assume that the functions fj(λ, x1, . . . , xm) (j = 1, . . . , n) are analytical. Then
the zero set N = {(λ, x) ∈ Cm+1 : λ ̸= λ0, f(λ, x) = 0} of the left parts of
System (1) in the neighborhood of the point (λ0, x0) can be presented in the form
N = N0 ∪ N1 . . . ∪ Nm. Here the set N0 is empty or consists of a finite number
of the graphs of solutions x = ϕ(λ) where ϕ(λ) are some analytical functions of

the parameter (λ − λ0)
1
r (r is a natural number). Further, each of the sets Nj
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(j = 1, . . . ,m − 1) is empty or consists of a finite number of the ¡¡surfaces¿¿ that
are graphs of functions of type x = ϕ(λ; ξ1, . . . , ξj) where ξs (s = 1, . . . , j) are free
parameters (Fig. 1). Moreover, the functions ϕ(λ; ξ1, . . . , ξj) (j = 1, . . . ,m−1) have

Fig. 1. The zero set N

the following property: if we replace in these functions the parameters ξ1, . . . , ξj (s =
1, . . . , j) by some analytical functions ξs(λ) (s = 1, . . . , j) depending on parameters

(λ − λ0)
1
p (p is a natural) then the superpositions ϕ(λ; ξ1(λ), . . . , ξj(λ)) also will

be analytical functions of the parameter (λ − λ0)
1
q (q is also a natural, and p is a

divisor of q). At last, the set Nm is not empty only when System (1) is trivial, i. e.
when its left parts are identical to the zero (in this case any continuous in a point
λ0 function x(λ) such that x(λ0) = x0) is satisfy to System (1).

As a result we can give the description of the general structure of implicit func-
tions defined by System (1). It is obviously that the function x = x(λ) defined in
the neighborhood of the point λ0 is implicit if and only if its graph lies in the set
N. In particular, if the set N0 is not empty then it defines a finite set Φ0 of the
implicit functions. Each of these functions is an analytical function of the parameter
(λ− λ0)

1
r (r is a natural). Further, the sets Φj (j = 1, . . . ,m− 1) of implicit func-

tions, that are analytical functions of the parameter (λ−λ0)
1
r (r is a natural), whose

graphs lie on the ¡¡surfaces¿¿ ¡¡consistuting of¿¿ the set Nj (j = 1, . . . ,m − 1), are
infinite provided that they are nonempty. Remark else the following: if the set Nj

(j = 1, . . . ,m−1) is not empty then there are others (continuous in a neighborhood

λ0!) implicit functions which are not analytical of the parameter (λ − λ0)
1
r (r is a

natural). However such functions can be excluded from the consideration as soon
as the graphs of the analytical implicit functions of the set Φj fill by the surfaces of
Nj the neighborhoods of the point (λ0, x0).

Let us denote by Φ the set of all analytical implicit functions x = x(λ) of

the parameters (λ − λ0)
1
r (r is a natural) turning into x0 at λ = λ0. Obviously

Φ = Φ0 ∪ Φ1 ∪ . . . ∪ Φm.
The formulated statements was proved at the first half of XX-th century, as it

is known to the authors, by W. Rückert [7]. The more modern statement of these
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results can be found in the monographs [1, 3] (see also, [4]). The corresponding
arguments were based on Kronecker elemination theory for the systems of the alge-
braic equations and on Weierstrass preparation theorem for analytical functions of
the complex variable. In the monograph of S. Lefschetz [6] (he investigated the spe-
cial systems of the type (1) which arose in the problem about the periodic solutions
of the ordinary differential equations) the more elementary statement of the results
about the structure of the set of the implicit functions was given.

Though the S. Lefschetz arguments were not constructive, they laid down in
a basis of the general constructions of M. M. Vainberg and V. A. Trenogin. In
the monograph [8] they stated that their scheme allows them to give the complete
description of the sets Φ0,Φ1, . . . ,Φm and, moreover, to define the first coefficients
in the expansions of the series along the parameter λ or at its fractional degrees of
the solutions from set Φ0. In the monograph [4] was noticed that it is not truth. In
this monograph it was shown that to define the first coefficients of the expansions
of the series of the solutions of the general system (1) probably only for so-called
the simple solutions (the solution ϕ(λ) of the systems (1) is simple if m = n and for
close to λ0 and distinct from λ0 values λ the Jacobian det f ′x(λ, ϕ(λ)) is non zero).
Moreover, in this monograph it was shown that scheme of M. M. Vainberg and
V. A. Trenogin does not allow (if we use in the calculations only the finite numbers
coefficients of the expansions of the left part of System (1) at the series) to define
the number of the implicit functions of the set Φ0 and the coefficients of the first
members of the expansions of these implicit functions even when m = n = 3 (and in
essence when m = n = 2). In this monograph also was shown the special example
of the system (when m = n = 3) when some updating of the Lefschetz scheme allow
to define the structure of the set Φ0.

In the following section the Rückert–Lefschetz scheme will be analyzed in details.
Besides in this section we emphasize moments which make the Rückert–Lefschetz
scheme ¡¡not constructive¿¿ and, moreover, the Rückert–Lefschetz scheme does not
allow to define the structure of the set of the implicit functions defined by System
(1) even for the rough systems. (In this article System (1) is called rough if it has
only the finite number of the simple solutions (in [4] the term rough systems was
used in a bit different sense). It is known that System (1) is rough if and only if it
possesses to the following stability property: for every big enough natural N there
exists a natural Ñ such that if we change the members in the left parts of System
(1) whose orders are higher than Ñ then the number of the solutions of System (1)
does not change and, moreover, the first N members of the expansions in the series
of these solutions also do not change.) In the fourth section some modified scheme
of the research of System (1) is offered; the basic idea of this modification is due to
the mentioned above example from [4].

Let us notice that the Rückert–Lefschetz scheme is not unique. The various
statements about the structure of the implicit functions defined by the system (1)
have been received by V. V. Pokornyi, P. P. Rybin, V. B. Melamed, A. E. Gel’man;
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the considerable part of the results of these authors is summarized in the monograph
[4]. It is necessary to note the work [2] of N. P. Erugin separately because his
work contain a number of theorems about implicit functions which based on the
construction of the jets (the sum of first members in expansions in power series) of
the expansions of these functions at the series.

The proof of the Rückert–Lefschetz scheme use only the elementary means of
algebra and the theory of functions of complex variables (i. e., such classical concepts
as the resultant, the greatest common divisor of the polynomials with the coefficients
from the factorial rings (i. e. the rings with the unique factorization on primes),
etc.). The abstract theory of the polynomial ideals is not used. In this article we
use the results on the theory of implicit functions which described in [4].

2 The Rückert–Lefschetz scheme

Below we assume that λ0 = 0, x0 = 0 and fj(λ, x1, . . . , xm) ̸≡ 0 (j = 1, . . . , n).
From the last assumption follows that Φm = ∅.

We change the designations of functions fj(λ, x1, . . . , xm) onto f
(m)
j (λ, x1, . . . , xm)

(j = 1, . . . , n) (in what follows, it is convenient to fix the number of unknowns in

designations). Since the functions f
(m)
j (λ, x1, . . . , xm), j = 1, . . . , n, are analyti-

cal, we present the functions f
(m)
j (λ, x1, . . . , xm) (j = 1, . . . , n) in the form of the

converging series in some neighborhood of the zero

f
(m)
j (λ, x1, . . . , xm) =

∞∑
k0+k1+...+km=1

ak0,k1,...,kmλ
k0xk11 . . . xkmm (j = 1, . . . , n).

(3)
We divide each equation of System (3) on the highest possible degree of λ and

so, without the loss of generality, we can assume

f
(m)
j (0, x1, . . . , xm) ̸≡ 0 (j = 1, . . . , n).

In addition we make a linear substitution of the unknowns x1, . . . , xm so that the
functions

f
(m)
j (0, 0, . . . , 0, xm) (j = 1, . . . , n) (4)

turn out to be nonzero.
As a result of the application of the Weierstrass preparation theorem [3] to each

function f
(m)
j (λ, x1, . . . , xm) (j = 1, . . . , n) we receive the equalities

f
(m)
j (λ, x1, . . . , xm) = ε

(m)
j (λ, x1, . . . , xm) · f̃ (m)

j (λ, x1, . . . , xm), (5)

where ε
(m)
j (·) is an analytical function at the zero, such that ε

(m)
j (0) ̸= 0; f̃

(m)
j (λ, x1, . . . , xm)

is a polynomial of the unknown xm whose coefficients are analytical at the zero func-
tions of the parameter λ and unknowns x1, . . . , xm−1.
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From the equalities (5) follows that the search of implicit functions defined by
System (1) is equivalent to the analysis of the system of algebraic equations with
respect to the unknown xm:

f̃
(m)
j (λ, x1, . . . , xm) = 0 (j = 1, . . . , n). (6)

Notice that the superior coefficients of the polynomials of xm in the left parts of
System (6) are equal 1 and all other coefficients of these polynomials are analytical
functions of the parameter λ and unknowns x1, . . . , xm−1 turning into the zero at
the zero. This follows from our construction.

Let us remind (see, for example, [4, 6, 9]) that the rings of analytical at the zero
functions of a finite number of variables are factorial (a ring is called factorial if it
has identity element, has no divisors of the zero, and its elements are (uniquely up to
the order of multipliers) displayed as the product of prime multipliers). In such rings
the concept of the greatest common divisor is defined and all main statements of the
divisibility theory are true. In particular, the ring of polynomials with coefficients
from a factorial ring itself is a factorial ring.

Let us denote by d(m)(λ, x1, . . . , xm) the greatest common divisor of polynomials

f̃
(m)
j (λ, x1, . . . , xm), j = 1, . . . , n. Then

f̃
(m)
j (λ, x1, . . . , xm) = d(m)(λ, x1, . . . , xm) · ˜̃f (m)

j (λ, x1, . . . , xm)

(j = 1, . . . , n).
(7)

Hence System (1) is equivalent to the collection consisting of one algebraic equation
with the unknown xm

d(m)(λ, x1, . . . , xm) = 0, (8)

and the system of the algebraic equations with the unknown xm

˜̃
f
(m)

j (λ, x1, . . . , xm) = 0 (j = 1, . . . , n). (9)

If s the degree of the greatest common divisor d(m)(λ, x1, . . . , xm) is positive
then Equation (8), for any small enough λ, x1, . . . , xm−1, has s small solutions xm.
These solutions can be presented as the equations xm = ϕ(λ, x1, . . . , xm−1). More
precisely, each of such equations defines an element of the set Φm−1 and the solutions
x(λ) = (x1(λ), . . . , xm−1(λ), xm(λ)) of System (1) where xi(λ) (i = 1, . . . ,m−1) are

arbitrary analytical functions of λ or some fractional degree λ
1
r of λ turning into

the zero in the zero and a component xm(λ) is defined with the equation

xm(λ) = ϕ(λ;x1(λ), . . . , xm−1(λ))

where ϕ(λ;x1, . . . , xm−1) is a solution to Equation (8).
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If s = 0 then the greatest common divisor d(m)(λ, x1, . . . , xm) does not generate
the solutions of the System (6) from the set Φm−1, and, hence, solutions of System
(1).

If at least one of the functions
˜̃
f
(m)

j (λ, x1, . . . , xm) (j = 1, . . . , n) is distinct from
the zero at the zero point (it probably only in that case when the degree of the
polynomial d(m)(λ, x1, . . . , xm) coincides with the degree of one of the polynomials

f̃
(m)
j (λ, x1, . . . , xm) (j = 1, . . . , n)) then the process of the construction of the set
Φ comes to the end. Thus Φ coincides with Φm−1, and Φj (j = 0, . . . ,m − 2) will
appear the empty sets. Otherwise (i.e., when s the degree of greatest general divisor

of the polynomials f̃
(m)
j (λ, x1, . . . , xm) (j = 1, . . . , n) is strict less the degrees of each

of these polynomials) we pass to the consideration System (9).

Let us consider the system of the equations

f
(m−1)
j (λ, x1, . . . , xm−1) = 0 (j = 1, . . . , nm−1), (10)

whose left parts are the full system of the resultants (see, for example, [1, 4, 5]) for
the polynomials standing at the left parts of System (9).

System (10) is like to the initial system (1), however, its left hand sides depend
on the smaller number of the variables (namely from λ, x1, . . . , xm−1). Thus if n = 2,
nm−1 = 1 and if n > 2, the number nm−1 is greater the number n. The following
simple statement (see, for example, [4]) will be use below.

Lemma 1 System of the equations (9) has the small solutions if and only if System
of the equations (10) has the small solutions. More precisely, if x(λ) = (ξ1(λ), . . . ,
ξm−1(λ), ξm(λ)) is a small solution of System (9), then x̃(λ) = (ξ1(λ), . . . , ξm−1(λ))
is a small solution of System (10). Vice versa, if x̃(λ) = (ξ1(λ), . . . , ξm−1(λ)) is a
small solution of System (10), then there is a finite (not equal to the zero) number
of the continuous at the zero and turning into the zero in the zero of functions ξm(λ)
for which x(λ) = (ξ1(λ), . . . , ξm−1(λ), ξm(λ)) is a small solution of System (9).

It is possible to apply all the same arguments to the system (10) as was applied
to the system (1). So having reduced the left parts of the system (10) on the possible
greatest degrees of the parameter λ then having complete the suitable linear substi-
tution of the unknowns and having applied the Weierstrass preparation theorem, we
will receive that System (10) is equivalent to the system of the algebraic equations
with respect to the unknown xm−1:

f̃
(m−1)
j (λ, x1, . . . , xm−1) = 0 (j = 1, . . . , nm−1). (11)

Let us denote by d(m−1)(λ, x1, . . . , xm−1) the greatest common divisor of the



8 P.P. Zabreiko, A.V. Krivko-Krasko

polynomials f̃
(m−1)
j (λ, x1, . . . , xm−1) (j = 1, . . . , nm−1). Then

f̃
(m−1)
j (λ, x1, . . . , xm−1) = d(m−1)(λ, x1, . . . , xm−1) ·

˜̃
f
(m−1)

j (λ, x1, . . . , xm−1)

(j = 1, . . . , nm−1).
(12)

and the system of the equations (10) is equivalent to the set of one algebraic equation
of the unknown xm−1

d(m−1)(λ, x1, . . . , xm−1) = 0, (13)

and the system of algebraic equations of the unknown xm−1˜̃
f
(m−1)

j (λ, x1, . . . , xm−1) = 0 (j = 1, . . . , nm−1). (14)

If sm−1 the degree of the greatest common divisor d(m−1)(λ, x1, . . . , xm−1) is
positive then the equation (13) at any enough small λ, x1, . . . , xm−2 has sm−1 small
solutions xm−1 = ξ(λ, x1, . . . , xm−2). Thus these solutions will define the elements
of the set Φm−2, that is the solutions of System (10)

x(λ) = ϕ(λ;x1(λ), . . . , xm−2(λ)),

where xi(λ) (i = 1, . . . ,m−2) are any free parameters. If sm−1 = 0 then the greatest
common divisor d(m−1)(λ, x1, . . . , xm−1) does not generate solutions of System (11),
hence, and the solutions of System (10).

If at least one of the functions
˜̃
f
(m−1)

j (λ, x1, . . . , xm−1) (j = 1, . . . , nm−1) is
distinct from the zero at the zero point then the system of the equation (14) does
not have the small solutions. Using the solutions of the equations (13) and also using
Lemma 1 the solutions of the system (1) are constructed. The set of these solutions
forms the set Φm−2. Thus Φ = Φm−2 ∪Φm−1 and the process of the construction of
the set Φ comes to the end. Otherwise we pass to the consideration of System (14).

If we apply to System (14) all the argumentation which was applied to System
(9) we construct the set Φm−3. Other sets Φk (k = 0, . . . ,m − 4) are constructed
similarly. After the reduction on a multiplier λ in the suitable degrees by means of
the linear change of variables and applying the Weierstrass preparation theorem to
every system

f
(k)
j (λ, x1, . . . , xk) = 0 (j = 1, . . . , nk) (15)

we obtain the system

f̃
(k)
j (λ, x1, . . . , xk) = 0 (j = 1, . . . , nk); (16)

of the algebraic equations of the unknown xk. Then the greatest common divisor
d(k)(λ, x1, . . . , xk) of the polynomials, that stands in the left parts of equations of
this system is defined. At last, we construct the system

˜̃
f
(k)

j (λ, x1, . . . , xk) = 0 (j = 1, . . . , nk). (17)
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In this moment the set Φk−1 is nonempty if and only if the degree of the polynomial
d(k)(λ, x1, . . . , xk) is positive; the set Φ0 ∪ . . . ∪Φk−2 is nonempty if and only if the
degrees of all polynomials which stand in the left part of System (17) are positive or
the left parts of the equations of System (15) turn into the zero at the zero values
of the arguments.

The described process of the construction of the set Φ leads to a chain of sets
of the equations and the systems of the equations. If the process does not break at
some intermediate step, then this chain could be present as:

f
(m)
j (λ, x1, . . . , xm) = 0 (j = 1, . . . , n)

↙ ↘
d(m)(λ, x1, . . . , xm) = 0 f

(m−1)
j (λ, x1, . . . , xm−1) = 0 (j = 1, . . . , nm−1)

↙ ↘
d(m−1)(λ, x1, . . . , xm−1) = 0 f

(m−2)
j (λ, x1, . . . , xm−2) = 0 (j = 1, . . . , nm−2)

↙ ↘
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

↙ ↘
d(k+1)(λ, x1, . . . , xk+1) = 0 f

(k)
j (λ, x1, . . . , xk) = 0 (j = 1, . . . , nk)

↙ ↘
d(k)(λ, x1, . . . , xk) = 0 f

(k−1)
j (λ, x1, . . . , xk−1) = 0 (j = 1, . . . , nk−1)

↙ ↘
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

↙ ↘
d(3)(λ, x1, x2, x3) = 0 f

(2)
j (λ, x1, x2) = 0 (j = 1, . . . , n2)

↙ ↘
d(2)(λ, x1, x2) = 0 f

(1)
j (λ, x1) = 0 (j = 1, . . . , n1)

↙
d(1)(λ, x1) = 0.

(18)
Let us write out from (18) the equations participating in the construction of the

set Φk (k = 0, . . . ,m− 1), and we arrange them in the form

f
(m)
j (λ, x1, . . . , xm) = 0 (j = 1, . . . , n)

↖
f
(m−1)
j (λ, x1, . . . , xm−1) = 0 (j = 1, . . . , nm−1)

↖
. . . . . . . . . . . . . . .

↖
f
(k+1)
j (λ, x1, . . . , xk+1) = 0 (j = 1, . . . , nk+1)

↗
d(k+1)(λ, x1, . . . , xk+1) = 0 (k = 0, . . . ,m− 1).

(19)
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The diagram (19) shows that the solutions of the equation

d(k+1)(λ, x1, . . . , xk+1) = 0

define (k + 1)-th components

xk+1(λ) = ψk+1(x1(λ), . . . , xk(λ))

required solutions by x1(λ), . . . , xk(λ). Further we pass to the system of the equa-
tions

f
(k+1)
j (λ, x1, . . . , xk+1) = 0 (j = 1, . . . , nk+1). (20)

The solutions of System (51) define (k + 2)-th components

xk+2(λ) = xk+2(x1(λ), . . . , xk(λ), xk+1(λ))

required solutions. Moving ≪upwards≫ we pass to the following system of the
equations and etc. Finally we ≪reach≫ the last system of the equations

f
(m)
j (λ, x1, . . . , xm) = 0 (j = 1, . . . , n). (21)

The solutions of the system (21) define the last components

xm(λ) = xm(x1(λ), . . . , xk(λ), xk+1(λ), . . . , xm−1(λ))

required solutions.
From (18) and (19) follows [4, 8]:

Theorem 1 In the complex case System (1) has the finite number of small solutions
if and only if the degrees of the polynomials d(i)(λ, x1, . . . , xi) (i = 2, . . . ,m) are equal
to the zero. Thus, if the degree of the polynomial d(1)(λ, x1) is equal to the zero then
System (1) has no small solutions. If this degree is positive, then System (1) has
the finite number of the small solutions.

The simple examples show that in a real case the analogue of the Theorem 1 is
false.

3 Analysis of the Rückert–Lefschetz scheme

The described scheme of the research of implicit functions defined by System (1)
allows to describe the general structure of the small solutions x = x(λ) of this system.
There appears a natural question: Is it possible, using the Rückert–Lefschetz scheme,
to construct implicit functions (i.e. elements of the set Φ) determined with System
(1)? The matter is that the calculations with analytical functions are usually realized
through their expansion at the series of their variables (such calculations are usually
called approximate). Moreover, actually only the first coefficients are used in the
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calculations. Then there appears a new question: Are the first coefficients in Taylor
expansions of solutions to System (1) determined with the first coefficients in the
Taylor expansions of the left parts of this system in Taylor series?

Recall that the calculations in the Rückert–Lefschetz scheme described above
are really realized in the rings of analytical functions at the zero of the variables
(λ, x1, . . . , xm−1, xm), (λ, x1, . . . , xm−1), . . . , (λ, x1), λ. However, dealing with con-
crete systems of equations we must operate only with a finite number of coefficients
in corresponding Taylor expansions of solutions and left hand parts of the system
under consideration, or — as accepted to speak in a considered problem — to within
the members of the higher order. At the first sight it seems that the similar ¡¡ap-
proximate¿¿ calculations probably to carry out for the Rückert–Lefschetz scheme
described above. However it not so. More precisely, in the process of such calcula-
tion for concrete systems one can meet situations when the first coefficients of the
Taylor expansions of solutions are not determined with the first coefficients of the
Taylor expansions of the left parts of the system under consideration.

More exactly: if calculations due to the Rückert–Lefschetz scheme are realized in
the framework of calculations with the final number of coefficients (not in the rings
of analytical functions or corresponding formal power series!) then it, generally
speaking, does not allow to define a number of these implicit functions and jets of
these solutions. Thus, the Rückert–Lefschetz scheme has different properties in the
framework of calculations in the rings of analytical functions and in the framework
of calculations with the jets of the left hand sides of equations of System (1) and
jets of its small solutions.

Of course, in the simplest case m = n = 1 we do not meet with this problem.
The Newton diagram method states that the answer to these questions is positive
for simple solutions (a solution x(λ) of the scalar equation f(λ, x) = 0 is simple if
f ′x(λ, x(λ)) is not zero) and negative for not simple solutions.

Although we are interested in the cases when m = n, under the realization of
the Rückert–Lefschetz scheme the systems arise with m ̸= n (more precisely, with
m < n). Let us consider one of such cases: m = 1, n = 2. System (1) in this case
has a form {

f1(λ, x1) = 0,
f2(λ, x1) = 0.

(22)

The scheme described above in this case is leaded to the calculation of the resultant
f12 of the left parts of System (22) and to analysis of the equation

f12(λ) = 0. (23)

The equations of System (22) have a common solution if and only if the resultant
f12(λ) = 0. However, this fact is determined only an infinite number of the cor-
respondent coefficients of f12(λ), and the calculations of the latter is required the
knowledge of an infinite number of coefficients of the left hand parts of System (22).
Thus, the fact of the solvability of the simplest overdetermined system does not
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depend on the first coefficients in Taylor expansions of the left hand parts of the
system under consideration. It is evident, that the analogous statement holds for
arbitrary overdetermined systems.

The following simple case when m = 2, n = 1; System (1) in this case has a form

f1(λ, x1, x2) = 0. (24)

and, without the loss of generality, one can assume that the left hand side f1(λ, x1, x2)
of this equation is a polynomial with respect to x2. In spite of the simplicity of
this equation the analysis of its solutions is connected with serious difficulties and
requires the using of Singularity Theory. However, the application of the Rückert–
Lefschetz scheme, in the main (for us) case m = n, leads only to determined systems
(if m = n = 2) or overdetermined sysstems (if m = n > 2). Thus, we need not in
the analysis of System (24) and also more complicated underdetermined systems.

Let us consider the case: m = n = 2. In this case System (1) has a form{
f1(λ, x1, x2) = 0,
f2(λ, x1, x2) = 0.

(25)

The scheme described above in this case is led to the calculation of the resultant f12
of the left parts of the considered system and to analysis of the equation

f12(λ, x1) = 0. (26)

From the description of the Rückert–Lefschetz scheme it follows that the first
coefficients in Taylor expansions of the left hand sides of System (25) determine the
first coefficients in Taylor expansion of the left hand sides of System (26). Then,
in generic cases, in order to analyze System (26) it is possible to apply the Newton
diagram method. This allows to define, generally speaking, the first members of all
solutions to System (26).

Further, substituting these approximate solutions x1(λ) in the equations of Sys-
tem (25) we received a system of compatible equations for the definition of the
second components x2(λ) of the solutions of System (25):{

f1(λ, x1(λ), x2) = 0,
f2(λ, x1(λ), x2) = 0.

(27)

This system is similar to System (22) (with the unknown x2 instead of x1), however,
now we know that this system is solvable. Applying the Newton diagram method
to each equations of System (27) one can construct the jets of all solutions to each
equations of System (27). If there exists the only common jet of solutions to equa-
tions of System (27) then this jet is a jet of a common solution to both equations of
System (27). In all other cases we can only state that System (27) is solvable but
can not determined jets of common solutions to System (27).
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Really, if Si = {xi,σ2 (λ) : σ = 1, . . . , si}, i = 1, 2 are the sets of solutions of
System (27), then the set of solutions of System (27) coincides with the set S1 ∩S2.
However, the previous arguments show that we can deal only with jets of corre-
sponding solutions. These jets form new sets S̃i = {x̃i,σ2 (λ) : σ = 1, . . . , si}. In

the case under consideration the intersection S̃1 ∩ S̃2 contains at least two com-
mon elements. And in this case it is impossible to determine which of them really
determines common solutions of System (27) and which no.

Thus, using the Rückert–Lefschetz scheme it is possible to determine the first
coefficients in Taylor expansions of solutions to System (25) if for each x1(λ) solution
to System (26) there exists the only common jet of solutions to equations of System
(27). This common jets determine the second components x2(λ) (for each x1(λ)) of
solution to System (25).

Here, it must be emphasized that all examples of concrete systems with two
equations and two unknowns in the monograph [8] are covered by the unique, pointed
out above, case when the Rückert–Lefschetz scheme allows us to construct jets of
solutions.

Now we pass to the case, when m = n > 2. The corresponding system has a
form 

f1(λ, x1, . . . , xn−1, xn) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .
fn(λ, x1, . . . , xn−1, xn) = 0,

(28)

and, without the loss of generality, we can assume that each fj(λ, x1, . . . , xn−1, xn),
j = 1, . . . , n, is a polynomial with respect to xn of positive degree. In the framework
of calculations with the first coefficients in expansions of these polynomials we ought
to consider only the case when all members of resultant system to these polynomials
are nonzero. In addition, the number of members in the obtained resultant system
is more than n. Thus, the corresponding system of equations

f̃1(λ, x1, . . . , xn−1) = 0,
. . . . . . . . . . . . . . . . . . . . . . . .

f̃n1(λ, x1, . . . , xn−1) = 0,

(29)

(n1 > n− 1) is overdetermined. We can chose n− 1 equations among equations of
this resultant system and, in a generic case, find small solutions (x1(λ), . . . , xn−1(λ)),
defined by this system of n − 1 equations with n − 1 unknowns. And among these
solutions we must gather those of them which satisfy to other equations of System
(29). However, this can be done only if we use infinite number of coefficients in
Taylor expansions of left hand sides of these equations. The latter is not possible in
the framework of calculations with the first coefficients.

Thus, the Rückert–Lefschetz scheme, in the framework of calculations with the
first coefficients, does not allow, generally speaking, to determine the first coefficients
of the Taylor expansions of solutions to System (1) (even for a rough systems). To
give the exact description of this fact we need in a new definition.



14 P.P. Zabreiko, A.V. Krivko-Krasko

Let M is a class of finite systems of type (1) with analytical left parts. We say
that some scheme (algorithm) S of investigation of solutions of systems from M is
effective if this scheme allows to define jets of all solutions of a system from S using
only a finite number of the first coefficients in the Taylor expansions of the left hand
parts of the system under consideration. It is evident, that the Rückert–Lefschetz
scheme is non effective in the class M of finite systems of type (1) if in this class
there exists systems without the property of roughness. So, the Rückert–Lefschetz
scheme can be effective the class M contains only rough systems. However, the
above-stated arguments prove the following statement.

Theorem 2 The Rückert–Lefschetz scheme of the construction of small solutions
of system of type (1) is not effective at m = n > 1 for a class of rough systems.

Let us remind (see for example [4]) that the Newton diagram method of investigation
of one scalar equation f(λ, x) = 0 with an analytical left part is effective.

4 Refinement of the Rückert–Lefschetz scheme

Below we give some standard complements to the Rückert–Lefschetz scheme, al-
though these complements lie outside of our main results.

Let us consider a case, when k = 0. We present a polynomial q(1)(λ, x1) =
d(1)(λ, x1) in the form of the product of prime multipliers over the ring K[λ, x1] of
analytical at the zero functions. Let p(1)(λ, x1) is one of prime multipliers of the
polynomial q(1)(λ, x1). Then each solution x1(λ) of an equation

p(1)(λ, x1) = 0 (30)

is a first component of an element in the set Φ0.

To define the second components x2(λ) of elements in the set Φ0 whose first
components are solutions of Equation (30) we consider a following system from (18)

f
(2)
j (λ, x1, x2) = 0 (j = 1, . . . , n2). (31)

The left parts of the equations in this system are the polynomials of x2 with coeffi-
cients from the ring K[λ, x1] of analytical in the zero functions turning into zero at
zero.

According to the Weierstrass preparation theorem let us replace coefficients of
polynomials standing in the left part of System (31) with their remainders from
division of them on the prime polynomial p(1)(λ, x1). As result of such replacement
System (31) pass to a system

f̂
(2)
j (λ, x1, x2) = 0 (j = 1, . . . , n2), (32)
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where f̂
(2)
j (λ, x1, x2) (j = 1, . . . , n2) are the polynomial of x2 whose coefficients

are polynomials of x1 and which degrees are less than degree of the polynomial
p(1)(λ, x1).

As p(1)(λ, x1) is a prime polynomial then System (32) is possible to be consider
as a system of algebraic equations from the unknown x2 in the field K(λ, x1) which
was obtained from the field K(λ) by adding an algebraic element x1, where x1 is a
solution of Equation (30). Since a concept of the greatest common divisor is defined
in the ring of polynomials over the field, System (32) is equivalent to one equation

q(2)(λ, x1, x2) = 0, (33)

where q(2)(λ, x1, x2) is a greatest common divisor of the polynomials standing in the
left part of System (32). Thus, to define the second component x2(λ) of elements
in set Φ0 which first components x1(λ) are solutions of Equation (30), it is enough
to find solutions of the algebraic equation (33).

Let p(2)(λ, x1, x2) is one of prime multipliers of the polynomial q(2)(λ, x1, x2). We
find the third components x3(λ) of elements in the set Φ0 whose first components
x1(λ) are solutions of Equations (30) and second components are solutions of an
equation

p(2)(λ, x1, x2) = 0. (34)

With that end in view we consider a following system from (18)

f
(3)
j (λ, x1, x2, x3) = 0 (j = 1, . . . , n3). (35)

The left parts of equations of System (35) are polynomials of x3 with coefficients
from the ring K[λ, x1, x2] of analytical in zero functions turning into zero at zero.
As System (35) is considered together with Equation (34) it can be simplified. In
the first place, in accordance with the Weierstrass preparation theorem, each co-
efficient of the left parts of System (35) is possible to replace with the remainder
of its division by the prime polynomial p(2)(λ, x1, x2). And secondly, coefficients of
obtained polynomials are possible be divided on the prime polynomial p(1)(λ, x1)
according to the Weierstrass preparation theorem and replaced with the remainders
from these divisions. As result System (35) pass to a system

f̂
(3)
j (λ, x1, x2, x3) = 0 (j = 1, . . . , n3), (36)

where f̂
(3)
j (λ, x1, x2, x3) = 0 (j = 1, . . . , n3) are polynomials of x3 whose coeffi-

cients are polynomials of x2 and whose degrees are less degree of the polynomial
p(2)(λ, x1, x2) and coefficients of these polynomials are polynomials of x1 whose de-
grees are less degree of the polynomial p(1)(λ, x1).

As p(2)(λ, x1, x2) is a prime polynomial then System (36) is possible to be con-
sider as a system of algebraic equations from the unknown x3 in the fieldK(λ, x1, x2)
which was obtained from the fieldK(λ, x1) by adding an algebraic element x2, where



16 P.P. Zabreiko, A.V. Krivko-Krasko

x2 is a solution of Equation (34). In such case System (36) is equivalent to one equa-
tion

q(3)(λ, x1, x2, x3) = 0, (37)

where q(3)(λ, x1, x2, x3) is a greatest common divisor of polynomials standing in
the left part of System (36). To determine the third component x3(λ) of solutions
x(λ) of System (1) which first components are solutions of Equation (30) and the
second components are solutions of Equation (34) it is enough to find solutions of
the algebraic equation (37). Thus, to define the third component x3(λ) of elements
in the set Φ0 whose first component x1(λ) is a solution of Equation (30) and whose
second component x2(λ) is a solution of Equation (34), it is enough to find solutions
of the algebraic equation (37).

Continuing similarly we show that each component xj(λ) (j = 1, . . . ,m) of
elements in the set Φ0 will be defined by an algebraic equation

p(j)(λ, x1, . . . , xj−1, xj) = 0, (38)

whose left part is a prime polynomial of variable xj with coefficients from the ring
K[λ, x1, . . . , xj−1] of analytical in the zero functions turning into zero at zero. More-
over these coefficients are polynomials of variable xj−1 with coefficients from the ring
K[λ, x1, . . . , xj−2] of analytical in the zero functions turning into zero at zero. In
turn, and coefficients of these polynomials are polynomials of variable xj−2 with
coefficients from the ring K[λ, x1, . . . , xj−3] of analytical at zero functions turning
into zero at zero in turn and etc.

Collecting equations (30), (34), (38) (j = 3, . . . ,m) we get that each element in
the set Φ0 is defined by a system of algebraic equations

p(m)(λ, x1, . . . , xk, . . . , xm) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

p(k)(λ, x1, . . . , xk) = 0,
. . . . . . . . . . . . . . . . . . . . .

p(2)(λ, x1, x2) = 0,

p(1)(λ, x1) = 0.

(39)

with coefficients, whose structure is described above.

From the algebra it is known (see, for example, [6, 9]) that a finite number of the
consecutive algebraic expansions of the field of the quotients K(λ) is equivalently
to the simple algebraic expansion. In more details, there are complex numbers ai

(i = 1, . . . ,m) for which: (i) the function η(λ) =
m∑
i=1

ai ·xi(λ) satisfies to an algebraic

equation ψ(λ, η) = 0 with coefficients from the fieldK(λ) and (ii) each function xj(λ)
(j = 1, . . . ,m) lies in the field K(λ, η), i.e. has form xj(λ) = cj1(λ) + cj2(λ)η(λ) +
. . . + cjs(λ)η

s−1(λ), where cjσ(λ) (j = 1, . . . ,m, σ = 1, . . . , s) are functions from
K(λ), and s is a degree of the equation ψ(λ, η) = 0. Thus, System (39) is equivalent
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to one algebraic equation and the components of corresponding element in set Φ0

are defined by the roots of this algebraic equation:{
ψ(λ, η) = 0,
xj(λ) = cj1(λ) + cj2(λ)η(λ) + . . .+ cjs(λ)η

s−1(λ) (j = 1, . . . ,m).
(40)

Let us remind that a field of fractions K(λ) can be presented as

K(λ) =

{
λθ

p∑
i=0

viλ
i : vi ∈ C, v0 ̸= 0, p ∈ N, θ ∈ Z

}
. (41)

The field of fractions K(λ) is not algebraically closed, however its algebraic closure
K∗(λ) is easy described

K∗(λ) =
∞∪
r=1

K(λ
1
r ), (42)

where K(λ
1
r ) is a field of fractions of the rings K[λ

1
r ] of analytical functions.

From the aforesaid follows that each element in the set Φ0 is an analytical func-
tion of the parameter λ or an analytical function of λ

1
r .

Let us notice also that each system (39) defines one or several elements in the
set Φ0.

Let us pass to the cases when k > 0. The basic arguments which was spent with
the analysis of set Φ0 are saved at the analysis of sets Φk.

Let us present the polynomial q(k+1)(λ, x1, . . . , xk, xk+1) = d(k+1)(λ, x1, . . . , xk, xk+1)
in the form of the product of the prime polynomials over the ring K[λ, x1, . . . , xk]
of analytical functions at the zero.

Let p(k+1)(λ, x1, . . . , xk, xk+1) is one of the prime multipliers of the polynomial
q(k+1)(λ, x1, . . . , xk, xk+1).

Let us choose arbitrary x1(λ), . . . , xk(λ). Then each solution xk+1 of an equation

p(k+1)(λ, x1, . . . , xk, xk+1) = 0 (43)

is (k + 1)-th component of the element in the set Φk.

To determine (k + 2)-th components of the elements in the set Φk whose first
k components are arbitrary and (k + 1)-th components xk+1(λ) are solutions of
Equations (43) we consider a system

f
(k+2)
j (λ, x1, . . . , xk, xk+1, xk+2) = 0 (j = 1, . . . , nk+2). (44)

Repeating the arguments which was spent above at the construction of second com-
ponents of solutions in the set Φ0, we pass to an equivalent system

f̂
(k+2)
j (λ, x1, . . . , xk, xk+1, xk+2) = 0 (j = 1, . . . , nk+2), (45)
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where f̂
(k+2)
j (λ, x1, . . . , xk, xk+1, xk+2) = 0 (j = 1, . . . , nk+2) are the polynomials of

xk+2 which coefficients are the polynomials of xk+1 and degrees are less than degree
of the polynomial p(k+1)(λ, x1,
. . . , xk, xk+1); then we pass to an equation

q(k+2)(λ, x1, x2, . . . , xk, xk+1, xk+2) = 0, (46)

where q(2)(λ, x1, x2) is a greatest common divisor of the polynomials standing in
the left part of System (45). Thus, to determine (k + 2)-th components xk+2(λ) of
elements in the set Φk which (k + 1)-th components are solutions of Equation (43),
it is enough to find the solutions of the algebraic equation (46).

Continuing similarly, as well as in a case k = 0 we show that each component
xj(λ) (j = k + 1, . . . ,m) of the elements in the set Φk is defined by an algebraic
equation

p(j)(λ, x1, . . . , xk, xk+1, . . . , xj−1, xj) = 0, (47)

whose left part is a prime polynomial of the variable xj with coefficients from the
ring K[λ, x1, . . . , xj−1] of analytical functions at the zero turning into the zero at
the zero. Moreover, in turn these coefficients are polynomials of the variable xj−1

with coefficients from the ring K[λ, x1, . . . , xj−2] of analytical functions at the zero
turning into the zero at the zero, and in turn coefficients of these polynomials are
polynomials of the variable xj−2 with coefficients from the ring K[λ, x1, . . . , xj−3] of
analytical functions at the zero turning into the zero at the zero and etc.

Collecting equations (43), (47) (j = k + 2, . . . ,m), we get that each element in
set Φk is defined by a system

p(m)(λ, x1, . . . , xk, xk+1, xk+2, . . . , xm) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(k+2)(λ, x1, . . . , xk, xk+1, xk+2) = 0,

p(k+1)(λ, x1, . . . , xk, xk+1) = 0,

(48)

where x1, . . . , xk are free parameters and each function p(j)(λ, x1, . . . , xj) (j =
k + 1, . . . ,m) is a prime polynomial of the variable xj with coefficients from the
rings K[λ, x1, . . . , xj−1]. In other words (k + 1)-th component of an element in
set Φk can be considered as an element from algebraic expansion of the field of
fractions K(λ, x1, . . . , xk) of the ring K[λ, x1, . . . , xk] of analytical functions at the
zero, (k + 2)-th component of this element can be considered as an element from
algebraic expansions of the field of fractions K(λ, x1, x2, . . . , xk, xk+1) of the rings
K[λ, x1, x1, . . . , xk, xk+1] of analytical functions at the zero, ..., at last, the last
component xm(λ) of this element can be considered as an element from algebraic
expansions of the field of fractions K(λ, x1, . . . , xm−1) of the ring K[λ, x1, . . . , xm−1]
of analytical functions at the zero.

As the case k = 0 (see, for example, [6, 9]), there are complex numbers ai, (i =

1, . . . ,m) such that: (i) the function η(λ) =
m∑

i=k+1

ai ·xi(λ) satisfy to some algebraic
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equation ψ(λ, x1, . . . , xk, η) = 0 with coefficients from the field K(λ, x1, . . . , xk) and
(ii) each function xj(λ) (j = k+1, . . . ,m) lies at the field K(λ, η), i. e. has the form
xj(λ) = cj1(λ, x1, . . . , xk) + cj2(λ, x1, . . . , xk)η(λ) + . . . + cjs(λ, x1, . . . , xk)η

s−1(λ),
where cjσ(λ, x1, . . . , xk) (j = k + 1, . . . ,m, σ = 1, . . . , s) are function from K(λ, x1,
. . . , xk) and s is a degree of the equation ψ(λ, x1, . . . , xk, η) = 0. Thus System (48)
appears equivalent to one algebraic equation and the components of the elements in
set Φk are defined by the root of this algebraic equation:

ψ(λ, x1, . . . , xk, η) = 0,
xj(λ) = cj1(λ, x1, . . . , xk) + cj2(λ, x1, . . . , xk)η(λ)+

. . .+ cjs(λ, x1, . . . , xk)η
s−1(λ), (j = k + 1, . . . ,m).

(49)

Thus, each function cjσ(λ, x1, . . . , xk) (j = k + 1, . . . ,m, σ = 1, . . . , s) can be pre-
sented in the form of fraction which numerator and denominator are elements of the
ring K[λ, x1, . . . , xk] of analytical functions at the zero. Therefore it fallow to choice
x1(λ), . . . , xk(λ) as the corresponding denominator of the functions cjσ(λ, x1, . . . , xk)
not turning into the zero at the zero.

Let us notice that the analogues of formulas (41) and (42) do not exist in the
case k > 0.

Again as well as in the case k = 0 each System (49) determines one or several
elements in set Φk.

From the spent above arguments follows

Theorem 3 In the field of fractions K(λ, x1, . . . , xk) (k = 0, . . . ,m− 1) of the ring
K[λ, x1, . . . , xk] of analytical functions at the zero for each element in the set Φk

there is a prime equation ψ(λ, x1, . . . , xk, η) = 0 depending on free parameters λ and
x1(λ), . . . , xk(λ), which roots is defined by the components xi(λ) (i = k+1, . . . ,m−1)
of this element. The components xi(λ) (i = k + 1, . . . ,m− 1) of the element in the
set Φk depend on free parameters λ and x1(λ), . . . , xk(λ). Thus, the components
of elements in set Φ0 are the solutions of systems which equations have form (40),
and the components of elements in the sets Φk (k = 1, . . . ,m − 1) are solutions of
systems of equations (49).

It has been above shown that the Rückert–Lefschetz scheme is not effective
scheme for construction of small solutions of System (1). One can see that the
refinement of this scheme is also ”non effective” for calculation with coefficients of
expansions of left hand sides of the equations in System (1). However, below we
show how to get the effective scheme of the construction of some small solutions of
System (1) by modifying the Rückert–Lefschetz scheme.

5 Modified Rückert–Lefschetz scheme

Applying the suitable change of variables and the Weierstrass preparation theorem,
we pass from System (1) to the consideration of the equivalent system of algebraic
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(with respect to xn) equations:

f̃
(n)
j (λ, x1, . . . , xn) = 0 (j = 1, . . . , n). (50)

Let us assume thus that m = n.
The set Dn of the trees with n vertexes is required to us. Let us remind that a

tree with n vertexes is a coherent graph without simple cycles or, that is equivalent,
a coherent graph with n vertexes and n− 1 edges. The set Dn is finite; the number
of its elements is equal to nn−2. A vertex of a tree is called multiple if it is end
vertex of more than one edge. We denote by µ(Dn) the set of all multiple vertexes
of a tree Dn.

Let Dn is a tree from the set Dn. Let us identify the vertexes of this tree with
the system of Equations (50) (i.e. we enumerate vertexes of Dn and associate to j-th
vertex of the tree Dn (1≤ p ≤ n) the j-th equation of the system (50)). Further,
to each edge {j1, j2} of the tree Dn (j1 and j2 are numbers of the end vertexes
of the edge {j1, j2}) we associate the resultant of the left parts of j1-th and j2-th
equations of System (50). As a result we get the system of (n − 1) equations with
n− 1 unknowns: 

f
(n−1)
1 (λ, x1, . . . , xn−1) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(n−1)
n−1 (λ, x1, . . . , xn−1) = 0,

(51)

where f
(n−1)
i (λ, x1, . . . , xn−1) (i = 1, . . . , n− 1) are the resultants corresponding to

the edges of D. We will be to assume that the left parts of this system are not zero.
As it is known (see, for example, [4]) x̃(λ) = (ξ1(λ), . . . , ξn−1(λ)) is a solution of

System (51), if x(λ) = (ξ1(λ), . . . , ξn−1(λ), ξn(λ)) is a solution of System (1). The
opposite statement is not true. However, in some cases, it is succeed to state that
for a given solution x̃(λ) = (ξ1(λ), . . . , ξn−1(λ)) of System (51) there exists a unique
solution x(λ) = (ξ1(λ), . . . , ξn−1(λ), ξn(λ)) of System (1).

Let x̃(λ) = (ξ1(λ), . . . , ξn−1(λ)) is a small solution of System (51). Let us con-
sider a system 

f1(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fn(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0,

(52)

which is received from System (50) by the replacement in this system the com-
ponents of the solution x̃(λ) = (ξ1(λ), . . . , ξn−1(λ)). We say that the solution
x̃(λ) = (ξ1(λ), . . . , ξn−1(λ)) Dn-regular, if System (52) has the unique common sim-
ple solution xn = ξn(λ). According to this definition Dn-regular solution x̃(λ) =
(ξ1(λ), . . . , ξn−1(λ)) uniquely determine the solution x(λ) = (ξ1(λ), . . . , ξn−1(λ), ξn(λ))
of System (50).

At first sight it seems that the definition of Dn-regular solution of System (51)
is senseless since this definition requires that the components of the solution x̃(λ) =
(ξ1(λ), . . . , ξn−1(λ)) are the first components of the corresponding solution of System
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(50), i.e. this definition require that the solutions of System (50) are defined by
the System (51) that evidently in the generic case is incorrectly. However, if in
the generic case it is impossible to construct all solutions of System (50) by the
solutions of System (51), in some natural cases it is probably to establish that the
chosen solution of System (51) is Dn-regular (certainly if it is that) with the help of
effective calculations (i.e. the calculations using only a finite number of coefficients
in the expansion of the left parts of System (50)) and to construct the missing
component of the solution of System (50).

The simple statement in this direction is

Lemma 2 If x̃(λ) = (ξ1(λ), . . . , ξn−1(λ)) is a small solution of the systems (51)
and if each equation of System (52) with j ∈ µ(Dn) has the unique solution then the
solution x̃(λ) = (ξ1(λ), . . . , ξn−1(λ)) of System (51) is Dn-regular.

Let us result the proof of the given statement. Assume that x̃(λ) = (ξ1(λ), . . . , ξn−1(λ))
is a small solution of System (51) and each equation of System (52) with j ∈ µ(Dn)
has a unique small solution. In this case, if j1 and j2 is connected with an edge from
Dn then the corresponding equations

fj1(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0,
fj2(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0

(53)

have a common (and unique) solution.
Let us consider equations of System (52)

fj1(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0,
fj2(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fjk(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0,

(54)

where j1, j2, . . . , jk ∈ µ(D). Since µ(Dn) is a coherent subgraph of Dn, these equa-
tions also have a common (and unique) solution xn = ξn(λ).

Now let us consider a pair of the equations of System (53)

fj1(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0,
fj2(λ, ξ1(λ), . . . , ξn−1(λ), xn) = 0,

(55)

where j1 ∈ µ(Dn), j2 /∈ µ(Dn), j1 and j2 are connected with an edge from Dn.
The first equation in this pair has a unique solution ξn(λ). Simultaneously, both
equations have a common solution. So, ξn(λ) is a solution of the second equation of
this system.

Thus, System (54) has a unique common solution ξn(λ) and, furthermore, System
(52) has a common (and unique) solution ξn(λ). Hence System (50) has a common
solution x̃(λ) = (ξ1(λ), . . . ,
ξn−1(λ), ξn(λ)) and so this solution is Dn-regular.
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Let us remind that if a solution xn(λ) of an equation of System (51) is simple
(see, for example, [4]), then beginning with a number r all following coefficients of
expansion of a simple solutions xn(λ) at the converging series in some neighborhood
of the zero

xn(λ) = γ0λ
τ0
τ + γ1λ

τ1
τ + . . .+ γlλ

τl
τ + o(λ

τl
τ )

(γi ∈ C, γ0 ̸= 0, τ, τi ∈ N, i = 0, . . . , l)

are defined from a linear equation

αγj = βj (j ≥ r),

where α is a constant. Hence a simple solution xn(λ) can be defined by a finite
number of coefficients of this expansion.

The lemma 2 is a special case of the following more general and obvious state-
ment.

Lemma 3 Let x̃(λ) = (ξ1(λ), . . . , ξn−1(λ)) is a small simple solution of System (51)
and let Si,t,n = {xi,t,σn (λ) : σ = 1, . . . , si; i = 1, . . . , n} is a set of jets of the simple

solutions xi,σn (λ) (σ = 1, . . . , si; i = 1, . . . , n) (t is a number of members of xi,t,σn (λ);
t ≥ ri; ri is a defining number of jets of the solutions xi,σn (λ)) for each equation
of System (52). Let sets Si,t,n = {xi,t,σn (λ) : σ = 1, . . . , si; i = 1, . . . , n} have

a unique common element ξ̃n(λ). Then System (50) has a small simple solution
x(λ) = (ξ1(λ), . . . , ξn−1(λ), ξn(λ)), where ξn(λ) is a simple solution of one of the
equation of System (52) which jet coincides with ξ̃n(λ).

Having applied the Weierstrass preparation theorem and the suitable change of
variables we pass from System (51) to the consideration of an equivalent system of
the algebraic equations from unknown xn−1:

f̃
(n−1)
j (λ, x1, . . . , xn−1) = 0 (j = 1, . . . , n− 1). (56)

Let us choose a tree from Dn−1 and use the same scheme for System (56).
Following we get a chain of trees δ = (Dn, Dn−1, . . . , D2) (Dj ∈ Dj , j = 2, . . . , n)
and corresponding to this chain the chain of systems (at each system from chain the
number of equations coincides with the number of unknowns):

f
(n)
1 (λ, x1, . . . , xn) = 0,
. . . . . . . . . . . . . . . . . . . . .

f
(n)
n (λ, x1, . . . , xn) = 0,

Dn−→


f
(n−1)
1 (λ, x1, . . . , xn−1) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(n−1)
n−1 (λ, x1, . . . , xn−1) = 0,

Dn−1−→ . . .

. . .
Dk−→


f
(k−1)
1 (λ, x1, . . . , xk−1) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(k−1)
k−1 (λ, x1, . . . , xk−1) = 0,

Dk−1−→ . . .
D3−→

{
f
(2)
1 (λ, x1, x2) = 0,

f
(2)
2 (λ, x1, x2) = 0,

D2−→

D2−→ f
(1)
1 (λ, x1) = 0.

(57)
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Let us emphasize that a tree D2 in this chain is defined unequivocally (the set
D2 consists of one element).

Let us notice that it is possible to formulate the statements for a system
f
(k−1)
1 (λ, x1, . . . , xk−1) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(k−1)
k−1 (λ, x1, . . . , xk−1) = 0.

(58)

which are analogues for Lemma 2 and 3.
Let us consider the last system of equations from this chain, i.e. an equation

f
(1)
1 (λ, x1) = 0. (59)

Let x1(λ) is a simple solution of this equation. If this solution is a D2-regular
solution then the previous system{

f
(2)
1 (λ, x1, x2) = 0,

f
(2)
2 (λ, x1, x2) = 0,

(60)

has an unique simple solution (x1(λ), x2(λ)). Following similarly with an assumption
of Dk-regularities of solution (x1(λ), . . . , xk−1(λ)) of a system

f
(k−1)
1 (λ, x1, . . . , xk−1) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(k−1)
k−1 (λ, x1, . . . , xk−1) = 0,

(61)

we get a simple solution (x1(λ), . . . , xk−1(λ), xk(λ)) of a system
f
(k)
1 (λ, x1, . . . , xk−1, xk) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(k)
k (λ, x1, . . . , xk−1, xk) = 0,

(62)

where k = 2, . . . , n−1. At last with an assumption of Dn-regularities of constructed
solution (x1(λ), . . . , xn−1(λ)) of a system

f
(n−1)
1 (λ, x1, . . . , xn−1) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(n−1)
n−1 (λ, x1, . . . , xn−1) = 0,

(63)

we get a simple solution (x1(λ), . . . , xn−1(λ), xn(λ)) of a system
f
(n)
1 (λ, x1, . . . , xn−1, xn) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(n)
n (λ, x1, . . . , xn−1, xn) = 0.

(64)
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It is obvious that a common number of such different chains equals
n∏

i=2
ii−2. A

solution x(λ) = (x1(λ), . . . , xn(λ)) of System (1) is called an effectively computable
solution if (x1(λ), . . . , xk−1(λ)) are Dk-regular solutions (k = 1, . . . , n).

It is obvious that an effectively computable solution is a simple solution since
each component of this solution is a simple solution of the corresponding system.
The scheme of the construction of effectively computable solutions of System (1) we
name as modified Rückert–Lefschetz scheme.

It is necessary to notice that in difference from the Rückert–Lefschetz scheme
the modified Rückert–Lefschetz scheme does not allow to get the full description of
the solutions of System (1), however in some cases the modified Rückert–Lefschetz
scheme allows to construct effectively computable solutions of System (1).

From the spent above arguments follows

Theorem 4 The modified Rückert–Lefschetz scheme is an effective scheme for the
construction in set of solutions of System (1) if and only if this set consists of only
effectively computable solutions.

6 Case of real effectively computable solutions

Above we supposed that the parameter λ and the unknowns x1, . . . , xm are complex
numbers; the coefficients of the expansion in series fj(λ, x1, . . . , xm) (j = 1, . . . , n)
accept the complex values. Therefore effectively computable solutions of System
(1) constructed by the modified Rückert–Lefschetz scheme generally are complex.
However, at a lot of applications as a rule represents the case when the parame-
ter λ and the unknowns x1, . . . , xm are real numbers; the coefficients of expansion
fj(λ, x1, . . . , xm) (j = 1, . . . , n) accept real values. We show how in such case to
determine which of effectively computable solutions of System (1) constructed by
the modified Rückert–Lefschetz scheme are real.

Let us use Newton’s diagram method for the construction of component xk(λ)
(k = 1, . . . , n) of an effectively computable solution x(λ) = (x1(λ), . . . , xn(λ)) of
System (1).

The Newton’s diagram method allows to construct the set of solutions of the
scalar equation from the parameter λ. Thus each solution of this equation can be
presented in the form of series converging in some neighborhood of the zero.

The components xk(λ) (k = 1, . . . , n) of effectively computable solutions x(λ) =
(x1(λ), . . . , xn(λ)) of System (1) are defined by the scalar equations. Thus each
component xk(λ) (k = 1, . . . , n) is a simple solution of the corresponding scalar
equation and can be represented in kind of converging series in some neighborhood
of the zero

xk(λ) = γ0λ
τ0
τ + γ1λ

τ1
τ + . . .+ γlλ

τl
τ + o(λ

τl
τ )

(γi ∈ C, γ0 ̸= 0, τ, τi ∈ N, i = 0, . . . , l).
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Therefore, if all members of the expansion xk(λ) were real until the defining number
rk then all subsequent members of expansion xk(λ) will be also real.

It is necessary to notice that reality of the coefficient γl not means reality of

member γlλ
τl
τ of expansion xk(λ) (k = 1, . . . , n) since at different values λ (λ ≥ 0

and λ < 0) the conditions on reality of the member γlλ
τl
τ will be various.

Let us notice also that the members of the expansion of the components x1(λ),
. . . , xn(λ) of the simple solution x(λ) = (x1(λ), . . . , xn(λ)) of System (1) are defined
by a finite number of coefficients in the expansion at series of the left parts of the
equations of System (1).

From the spent arguments follows

Theorem 5 The modified Rückert–Lefschetz scheme allows to determine real effec-
tively computable solutions of System (1). Thus an effectively computable solution
x(λ) = (x1(λ), . . . , xn(λ)) is real if and only if first rk members of the expansion of
each component xk(λ) (k = 1, . . . , n) are real.
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