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Thermodynamic Plasma Properties Near the Sheath Edge in
Kinetic Tonks-Langmuir Model with Finite lon Source
Temperatures

N. Jelic, L. Kos, J. Duhovnik

Abstract: Modeling plasmas in fluid codes is essentially limited torégion of plasma quasi-
neutrality since, due to their high thermodynamic equilibr, fluid models near the plasma
boundaries fail. Recently a concept of the polytropic cogdfit function, which is a local
guantity (rather than a constant, as usually assumed impladysics), has been introduced
by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)] . This carttap been already applied to
the Tonks-Langmuir discharges in the case of ions creatgthBma from a cold ion source,
yet, due to the non-reliability of the existing models netgethe important case with finite ion
sources. Recently a highly reliable solution of the plasopaa@on with finite temperature in
the limit e = Ap/¢ = 0 (whereAp is the Debye length anélis a proper characteristic length
of the discharge) has been reported by Kos et al. [Phys. R&d®, 093503 (2009)]. Unlike
previous Bissell-Johnson models [Phys. Fluids 30, 779 {J]98he validity of which was
limited to the rather narrow ranges of ion source tempeeatwrith the model by Kos et al. this
range is unlimited and solutions are obtained with a higtalbdity and in a high resolution.
Here we employ this model to find relevant plasma parametetfseasheath edge. Special
attention is given to the fluid Bohm criterion, which with tle@ polytropic coefficient function
turns out to be exact. It shows that a kinetic generalizadfdhis criterion might be disregarded
for practical purposes.

Keywords: plasma polytropic coefficients, plasma-sheath boundasioh applications, integro-
differential equations, Bohm criterion

1 Introduction

The Tonks-Langmuir [25] problem with collisionless disaies is regarded as one of
the core problems in the area of basic plasma physics andcatyph in space labora-
tory and fusion plasmas, which fails, however, to be satisfdly solved even with rather
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simple physical scenarios of interest. This results from @éRktreme non-linearity of the
problem, which we illustrate via our mathematical formigatin the form of a general
integro-differential equation

szn(qa)id—qJ = 1—A/¢W(¢’)%(B 7,0, ®) d’ (1)
W3 do 0 Y

where the unknown function to be found 44 ®), while other functions., e.g., singular
kernel.#", and local functiom(®) are prescribed in advance, and arbitrary parameters
the problem arg3, € and 1, while the problem eigenvalue . It should be pointed out
that such an equation emerges from an elementary physieabhso with numerous ap-
proximations and compromises yet, nevertheless, remasiifi both mathematically and
numerically. This requires further assumptions to attawk laopefully solve the equation,
as will be done bellow.

In order to introduce the reader with the physical backgdoohEq. (1), Fig. 1 il-
lustrates the problem with one-dimensional geometry. @/bitails will be elaborated
in the next section, we merely note here that the problemistsnsf finding a potential
profile together with ion velocity distribution providedettelectron density distribution is
known, and the mechanisms of ion production and energy gaidslosses are well de-
fined. Schematic potential profife(x) is shown in the case of a negligibte This means
that in a very thin sheath region the main potential ddap- ®,, is located, (wherebg
- the plasma-sheath potential drop as measured with regpéae center of discharge is
the point at which a sudden drop of the electric fielg= —1/W(®P) is situated, andp,,
is the wall potential to be found self consistently from tlatjzle flux balance). Due to
the symmetry of the problem, only half of the discharge sthdad considered. In seeking
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Fig. 1. Schematic diagram of the T&L model in one-dimensidptane) geometry with potentia(x). The
plasma center at= 0, walls atx = +L. @5 is the potential of the sheath edgey is the wall potential.

a solution to this type of problem, Tonks and Langmuir (T&buhd that the complete
formulation can be split into “plasma approximation,” wlestrict quasi-neutrality is as-
sumed and “sheath approximation”, where the electric fieltidates. The corresponding
two regions of the plasma-wall transition layer are ofteiemed to as “the presheath” and
“the Debye sheath” regions. T&L found approximate solutidar these two regions in
plane, cylindrical and spherical geometries with the aggion that the ions are generated
at rest. This is known as the "cold” or "singular” ion sour@esario, unlike much more
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complex the "warm” or "regular” ion source case, which is ubdject of the present paper.
T&L’s “intuitive” approach involves splitting the plasmsheath equation into two parts,
later rendered into a precise mathematical context rezedrtty Caruso and Cavaliere [6]
via employing the boundary layer theory by van Dyke[26]. d@exding with this approach,
Harrison and Thompson (H&T) [9] upgraded the Tonks and Lamng@pproximate solu-
tion to an exact analytic one. Self [23], however, annourecedmpletenrumericalsolution,
i.e., without the quasi-neutrality assumption, but stilhaa cold ion source.

The first attempt to tackle the plasma solutien=0) with a regular (warm) ion source
(the neutral temperaturg, # 0) has been done by Emmert et al. [8]. They employed an
artificial ion source, prepared in advance to yield the Mdhkareion distribution function.
Bissell and Johnson (B&J) [4], on the contrasyartedfrom the Maxwellian ion source,
and found a numerical solution, unfortunately rather arelisiole one which, in addition,
remained limited to a rather narrow range of ion source teatpees. Scheuer and Emmert
(S&E) [22] used a better kernel approximation enabling therfind a solution in a wider,
yet still limited range which did not cover enough 'warm’ igources, which is of high
importance to fusion application. Kos et al. [12] and Jelialg[10], however, have recently
managed to employ the exact kernel instead of an approxioreen solving the plasma
problem with a "warm” Maxwellian ion-source without any testion, fore =0 ande #£0
respectively. With regard to the ion sources role, Harreath Thompson[9] (H&T) defined
the problem for a rather general ion source strength pr§fite n. and solved analytically
basic casef = 0,1, 2 with ne ~ exp(BP), (with ® the normalized local plasma potential),
where cas@ = 0 corresponds to the “flat” ion source spatial distributierg(, caused by an
electron beam or an external laser-caused ionizat®g),1 corresponds to the single-stage
electron-neutral impact ionization afti= 2 assumes a two-stage ionization mechanism.
In addition, a solution has recently been found for warm iourses [10].

The developments of the computational method [12] and theemigal simulation
method [3, 27] today open possibilities to deal with firgténite T, case (see e.g., Refs. [21,
11] ). Apparently, a two-scale approach proves to be a lgsseisting one. By contrast,
the analytic determination of the plasma-sheath boundargdgarded of extreme impor-
tance in plasma investigations via numerical codes andipshapplications. For example,
the validity of fusion-relevant codes dealing with the $eraf Layer, like SOLPS [7] and
EDGE2D, is limited to the region bounded by a plasma-sheattace at which the fluid
approach breaks. A well-defined boundary condition reguine employment of the fa-
mous Bohm criterion [5], i.e., its generalization [9]. ThelBn criterion is well elaborated
in its fluid and hydrodynamic counterparts foy= 0, yet in the finite ion-source temper-
ature cases it is far from being proven even in the fluid apgroan this paper we show
the most advanced formulation of the Bohm criterion in the&fapproach based on new
formulation of the ion polytropic coefficient function [154]. Moreover, we demonstrate
that our formulation sufficiently defines the plasma-shémthindary without invoking the
kinetic approach at all.
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2 Theoretical considerations

The general formulation of the problem as defined by Tonks lasnegmuir (T&L) in
1929 [25] for plane-parallel geometry consists in simwtausly solving Boltzmann'’s equa-
tion for the ion VDF,fi(x,V),

d?d e
_W:S_O(ni_ne)v (2

Vo — — —— =S(XV) and

where the collisional source ter@(x,v) on the right-hand side is a function describing
the relevant microscopic physics involved in the model @ériest, withx the Cartesian
space coordinatey, the particle velocitye the positive elementary chargg, the ion mass,
and®(x) the electrostatic potential at positia}y and Poisson’s equation for the potential,
respectively, wherey is the vacuum dielectric constant, ang are the ion and electron
densities, respectively, with additional assumptions pirggher boundary conditions. We
introduce the normalized quantities of interest as foltows

ed mv? X Nie Tn

T Lo vV, = — =N T T
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T T 2cyfi
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wherecy = /kTe/m; andL is any characteristic system length, (usually, the haiéte of
the plane-parallel discharge). Egs. (2) in the normalizeth$ read:

dfi do afi _S(X,V)

d L0 4
ox dx(dv) v an “E e e @)
respectively. Here = Ap/L (with the Debye lengthp = /&kTe/Nepe? andng the elec-
tron density at the center of the plasma) is the smallnessmter of the problem. Equa-
tion (4) shows that foe — 0 the quasi-neutrality condition holds up to the wall wheme a
infinitely thin sheath forms, characterized by infinite #iecfield. If, on the other hand,
“sheath scaling/Ap — X is employed, the sheath becomes infinitely wide.

Assuming that the electron density is Boltzmann-disteburi, = exp(®), the procedure
described in Ref. [13] leads to the solution in the form:

1 1 1
B/ dX exp@(x') — P(x)]exp| —{P(X) = P(x)}| Ko | 5 [P(X) — P(X)]

0 2Tn 2Tn
d’®
—1-¢g2 )
eexp(—d) 2

with B emerging from the condition of the charge flux balance in drenf[12]:
T o Tnmen_a\,eXp< kTe> ’

, (9

(6)



Thermodynamic plasma properties 75

with @, the wall potential andh,, the average ion density.

Note that Eq. (5) depends on configuration spactn the plasma-sheath problem we
assume that the potential profifxx) is monotonic, so that the inverse functig(®) is
monotonic as well, the mathematical rud?y/dx* = —(d?x/dy?)/(dx/dy)3 holds. Then
the elegant form of Eq. (1) is obtained after interchanghmg dependent and independent
variablesW(®') = dX/d®’ = —1/E. In fact, this is the Bissell-Jonson approach, which
caused theme extreme trouble. Nevertheless, interchatiggndependent and independent
variables yields the B&J formula:

o/ ‘“<<D'>exp{<1+ %) (@ (D,)] < <‘ >

Once a numerical solution of above equation is obtained straightforward (but not easy)
to calculate the ion velocity distribution, which in norrzald variables in accordance to
B&J reads

) do’ . @)

(000.) = B | w(@!yexp@) TP Z (= )/

do’ . (8)
o V2 — (@ — )

Furthermore, all the moments of ion VDF, i.e. the dengity-(/ f(v)dv), directional veloc-
ity (u= 2 [ f(v)vdy), and ion temperatur& = [ 1 f(v)(v—u)2dvand all higher moments
like heat flux, energy flux etc., can be found at any locatiord af course the quantity
<V 2>= %f f (v)dv/v? necessary for the calculation of the H&T plasma-sheath icond
tion.

Finally, once the moments of the velocity distribution ftioo are known, the special
quantity of our interest the polytropic coefficientx) (or equivalently; (®)) can be found
by using the expression:

n dT; _ n dT;/d®

On the other hand, the purpose of our paper is to deal withdalyehamic properties
at the plasma boundary, where a standard procedure of expatie charge density, —
n in terms of the potentiap(x) near the "infinitely distant” points/L — o, ®g — O,
where conditiongne — n;) — 0 andd®/dx— 0 hold. Under these conditions the linearized
PoissoN equation takes the form

2

2\ dx 2 do (10)
from where it follows that the condition
d(n —ne)
— 7K
. 0 (12)

must hold near the sheath boundary.
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Although it has been argued by Riemann [see e.g., Refs. [4)§], that whereas the
above expansion is valid in the fluid approach it is inappliean the kinetic approach,
where another expansion should be applied, for our presgpbpes it can be sufficiently
used as a universal one. We will proceed with the sheath sisagmploying it here further.
Then from the Vlasov equations:

Vd fi7e e ch dee o

— =0 12
1754 m e dx odv ’ (12)
or, alternatively, from systems of fluid equations:
d(ngexu“e) _ 0 ’
(13)
oy do an
m,eni,eui,ed—;e + ni,e& + Vl',ekTi,ed—)l(’e =0.

assumed to hold in the collisionless sheath region, reispepairs of equalities can be
obtained via
dne ::l:i }afhe v,
do Me) V OV
dne . €Nne
do Vl7ekTi7e_mi,eU%e ’

(14)

which suffices for our present purpose, i.e., for the presemdeling of the edge of a
strongly localized electric field region. Thus in the mosheal kinetic case the Harri-
son and Thompson [9] (H&T) generalization

_— | = ) — | =dv<
Zma,e/v ov dv Zm; /v2 dv<0 (15)

e e e

of the Bohm [5] criterion should be employed, where altéwesiorm with < v-2 > can be
obtained after partial integration.

Typically, however, the function of the electron velocitgtdbution or at least the elec-
tron density profile is assumed to be known. Thus treatingathgopulations kinetically,
the generalized H&T criterion turns somewhat more explicit

me((V) " >en <%>_l, (16)

where the right-hand side should be calculated either ikt from the known elec-
tron velocity distribution function or the electron degsjrofile n(®). Here the term
Tescr = eng(d ne/d®)~! 2?is known as the "screening temperature” [18, 17]. In theeca
of Maxwellian electrons the screening temperature cogxidith the global electron tem-
perature uniformly valid in the whole discharge. Hencehd ions are modeled in the fluid
approach, the criterion (11) takes the form:

mu? > yekTo+ yiKT = ¢2, (17)
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wherec? has the same structure as “classical” ion sound velocitpohmalized variables

SO we may write:
U >+/14+yTi. (18)

However, theessentialnovelty of the present work is that may not be considered
as a constant (taking values 1, 5/3, or 3 for the isotherntigbatic flow with isotropic
pressure and 3 for the one-dimensional adiabatic flow),esepted in any classic textbook
on plasma physics, but that it is a constant which, more@asstires that thexact equality
in the Bohm condition (18) takes place, rather than inegugknown as the “marginal
Bohm condition”). This means that the plasma sheath boyndaing a point of the electric
field singularity, is the “sonic” surface (Mach number equalinity) according to Stengeby
and Allen’s hypothesis made in fluid theory [24] and Allenigpbthesis argued for the
kinetic model. [2], both made on the basis of comparing thepetision relations in the
limit of vanishing phase velocitw/k — 0 and small wave vectdtAp < 1 with the Bohm
criteria in both the fluid and kinetic approaches.

3 Results

Our interest here is Eq. (6) in the limit of vanishiag

5= ) axexs| (B+ 51 ) 0000~ (1451 ) 000] Ko (5 [00) 00 ) . (19)

where parametgB characterizes the ionization mechanism distribution Hi@j takes e.qg.,

0.0
02+
Tn is
04+ 20 2.62
o | 7.0 1.15
3.0 047
0.6 1.0 0.15
0.5 0.07 -
0.05 0.041
0.8 0.0 0.04
-1.0 s 1 s 1 s 1 s s
0.0 0.2 0.4 0.6 0.8 1.0
X

Fig. 2. Potential profiles obtained for different ion soufoeutral gas) temperatures. The ion temperatures at
the plasma sheath edge are indicated in parallel.

value 3 = 0 for uniformly distributed ion source arfgi= 1 for the ion source proportional
to the electron density (see e.g. Jelic et al. 2009 [10]). €uagle employs the piecewise
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Lagrangian interpolation of order 2 or 3 in the areas of ndick) gradients, supporting
iterations with high accuracy within wide ion-source temgpere ranges, especially in the
limit T, — O, which is sensitive to instabilities due to the prolongetdgration intervals
caused by AT, singularity [see Fig. 2 presents only the potential profdesained for
B =1 (while results obtained fg8 = 0 are omitted, yet will be discussed at a later point) in
a wide range of ion source temperatures. With any of padicly, potential profiles start
at® = 0 and end a®s independently of value g8. With exception of these end points the
pairs of curveg3 = 1 of B = O differ in all other points, reflecting the well-known prope
of the T&L solution that the plasma solution is invariant lwiespect to the potential, but
is not invariant with respect to the spatial coordinate. An imaottfact to be noted is that
the numerically obtained curves fop = 0.01 via our method excellent approximate the
exact analytic curves fof, = 0, so that for the sake of practicality they might be mutually
substituted.

For zero ion-source temperatufg = 0, the exact solution holds in the range from 0
to ds = —0.85403.. (maximum of the Dawson function [1p(,/2)), which gives the

-0.5 0.0 0.5 1.0 1.5

Fig. 3. lon velocity distribution functions at several gasis in the discharge (dashed lines indicate VDF’s in
the sheath region).

system length of the discharge (see e.g., Riemann[19])alEomparison with normalized
system length. = 1, inverse functior(z) can be numerically solved by finding the root
of z— x(®)/Lo = 0. Although Eq. (19) can be evaluated to arbitrary precistmsimulate
high grading near the sheath edge used in the warm case, tdipbcurve is positioned
at the following discrete positions

i\
>q=<1—<1—np_1> ) . i=01,...,np—1, (20)

where number of pointap and grading at endpoint and A, should be similar to those
used in warm casg, > 0. Our curves in Fig. 2 are all normalized to the unit lengtériable
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a comparison of the shapes. The important fact is that fottemperature there is a value
of the plasma potentiabs(T,) for which the electric field becomes infinite. These points of
breaking quasi-neutrality are identified as the plasmatkH®aundaries (as functions of the
ion source temperatures). According to the detailed resulielic et al. [10], the potential
drop |Ps(T,)| decreases with increased temperailyre

While VDF for the cold ion-source is the Dira&-function, for the finite ion-source
temperatured,, > 0 a variety of VDFs are possible. For tlygprocessing we used the
Maxwellian ion-source, as results were readily availabitih warious grid setups, so we
could also test the grid invariance. The calculation of theeptial profiles for the whole
temperature range and different grids took more than 70p@@€essor hours. Note that in
Fig. 2theions e.g., “recycled” from very hot neutrals inifusplasmas, are much “colder”
than the sources (see the temperature profiles in the figahesvp.

With known potential profiles the ion velocity distribut®at any point of the discharge
can be obtained via e.g., the trajectory method (see e.g..eKal [12]). For the sake of
curiosity, we illustrate velocity distributions at sevigskaces in the discharge both in plasma
(solid lines) and the sheath (dashed lines) in Fig. 3 for dquéar source temperatuiig =
1. It should be noted that calculating the ion velocity disttions can be facilitated through
a simple shift in the energy coordinate. In fact, calculatd ion velocity distributions at
an arbitrary high number of the positions is considerabdg leomputationally demanding
and considerably less expensive than calculating the @sofivhich requires huge CPU
resources. Finding the fluid quantities profiles is the nask to be done towards obtaining

3 T T T T T T T T

Fig. 4. lon-temperature profiles for various ion-sourcegeratures.

the complete information necessary for closing the set efdéita basis required for any
practical purposes. We do not show the ion density profilesesiby the definition of the
problem, they are identical to the electron density prafilesr illustration, Fig. 4 shows
the temperature profiles for several ion-source tempearstuvherefrom it is clear that the
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final ion temperatures are considerably bellow the ion sotemperatures. The knees of
the temperature profiles correspond to the points of ther@asheath boundaries (there is
an essential difference in the quantity of profiles with drteahperatures, as discussed in
detail in Ref. [15]). The essential results for this paperidustrated in Fig. 5, where we

8 T T T T T T T T
Tn Ti S

—0.0 0.04
---0.05 0.041

0.07
0.15
0.47
1.15

-0.2 -0.4 -0.6 -1.0

O

Fig. 5. lon polytropic coefficient function profiles for déffent ion-source temperatures. Small circles indicate
the plasma boundarie®§ = -0.854, -0.825, -0.699, -0.6249, -0.501, -0.42, -0.341)efach particular ion-
source temperaturd{= 0, 0.05, 0.5, 1, 3, 7, 20).

Fig. 6. Profiles of the square of the ion directional veIoQil&- thick lines) and the square of the ion-sound
velocitycZ = 14 yT;

show several profiles of the ion polytropic coefficient fuois for several ion sources. The
limiting case obtained in our previous works &y = 0 is marked by a thick line. Sharp
characteristic peak appears in this case due to the infteptiot of the temperature profile
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for cold ion source foil,, ~ 0 as discussed in Refs. [15, 20]. It is important to remember
the shape and the level of the bold curve joining the valuggin the large range of ion
source temperatures. Obviously, it is difficult to talk abany particular choice in which

v takes particular values of e.g., either 1 or 3. The valuesacherizing the plasma-sheath
positions are marked via values ®f for each particulaf,, used in this example.

The above-mentioned results seem to be at least quallfattvewn from the cited
literature. The key result of the present work, howeverllustrated in Fig. 6 as follows.
Profiles of the square of the ion directional velodi&(®) are presented in Fig. 6 (thick
lines) together with the squares of the ion-sound velodtg) = 1+ T, profiles (thin
lines). For any particular temperatufgthe points ofu?(®s) are marked with full circles.

It is obvious that the circles coincide with the intersestints (7 = c2). This statement

is valid with certain accuracy caused by ad hoc smoothingyateres dT;/d® necessary

for calculation of smootly via formula Eqg. (9). Fig. 6 appears to be a rather spectacular
one since the involvement of the local polytropic coeffitimction into the plasma-sheath
theory as a substantially relevant quantity is a consideriatprovement of the formula for
the Bohm criterion not only in the sense of quantitative aeieation of the Bohm velocity,

but also substantially from the point of view of the basiapiples of plasma physics.

4 Conclusion

The authors take the freedom to claim that the results pteden the present work are
both surprising and superior to the classic results as pregén standard course-books on
basic plasma physics or in highly refined available plasheath theories. Firstly, we con-
firm that the Bohm criterion with the marginal (equality) sigolds at the plasma boundary
provided the exadbcal value of ion polytropic coefficient function is known. Sedn

it turns out that once the local polytropic coefficient fuantis known,no kinetic crite-
rion such as Harrison and Thompson’s is needed, since thesicikformulations have no
measurable physically relevant plasma parameter. Fjnsithge our criterion with local
polytropic coefficient appears to be correct, it turns oat tny fluid formulation known
from published works with constamtis anoversimplificationof the Nature in comparison
with the present model, despite the seeming structuralagities in the formulas. The task
remaining to be done in future is to possibly show atmlytic arguments that our formula
is a universal one irrespective of the details of the digghauch as the shape of the ion
velocity distribution source, ionization mechanism, tle@petry of the discharge etc.
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