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Thermodynamic Plasma Properties Near the Sheath Edge in
Kinetic Tonks-Langmuir Model with Finite Ion Source

Temperatures

N. Jelić, L. Kos, J. Duhovnik

Abstract: Modeling plasmas in fluid codes is essentially limited to theregion of plasma quasi-
neutrality since, due to their high thermodynamic equilibrium, fluid models near the plasma
boundaries fail. Recently a concept of the polytropic coefficient function, which is a local
quantity (rather than a constant, as usually assumed in plasma physics), has been introduced
by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)] . This concept has been already applied to
the Tonks-Langmuir discharges in the case of ions created inplasma from a cold ion source,
yet, due to the non-reliability of the existing models neverto the important case with finite ion
sources. Recently a highly reliable solution of the plasma equation with finite temperature in
the limit ε ≡ λD/ℓ = 0 (whereλD is the Debye length andℓ is a proper characteristic length
of the discharge) has been reported by Kos et al. [Phys. Plasmas 16, 093503 (2009)]. Unlike
previous Bissell-Johnson models [Phys. Fluids 30, 779 (1987)], the validity of which was
limited to the rather narrow ranges of ion source temperatures, with the model by Kos et al. this
range is unlimited and solutions are obtained with a high reliability and in a high resolution.
Here we employ this model to find relevant plasma parameters at the sheath edge. Special
attention is given to the fluid Bohm criterion, which with theion polytropic coefficient function
turns out to be exact. It shows that a kinetic generalizationof this criterion might be disregarded
for practical purposes.

Keywords: plasma polytropic coefficients, plasma-sheath boundary, fusion applications, integro-
differential equations, Bohm criterion

1 Introduction

The Tonks-Langmuir [25] problem with collisionless discharges is regarded as one of
the core problems in the area of basic plasma physics and application in space labora-
tory and fusion plasmas, which fails, however, to be satisfactorily solved even with rather
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simple physical scenarios of interest. This results from the extreme non-linearity of the
problem, which we illustrate via our mathematical formulation in the form of a general
integro-differential equation

ε2n(Φ)
1

Ψ3

dΨ
dΦ

= 1−λ
∫ Φ

0
Ψ(Φ′)K

(

β ,τ ,Φ′,Φ
)

dΦ′ (1)

where the unknown function to be found isΨ(Φ), while other functions., e.g., singular
kernelK , and local functionn(Φ) are prescribed in advance, and arbitrary parameters of
the problem areβ , ε andτ , while the problem eigenvalue isλ . It should be pointed out
that such an equation emerges from an elementary physical scenario with numerous ap-
proximations and compromises yet, nevertheless, remaining stiff both mathematically and
numerically. This requires further assumptions to attack and hopefully solve the equation,
as will be done bellow.

In order to introduce the reader with the physical background of Eq. (1), Fig. 1 il-
lustrates the problem with one-dimensional geometry. While details will be elaborated
in the next section, we merely note here that the problem consists of finding a potential
profile together with ion velocity distribution provided the electron density distribution is
known, and the mechanisms of ion production and energy gainsand losses are well de-
fined. Schematic potential profileΦ(x) is shown in the case of a negligibleε . This means
that in a very thin sheath region the main potential dropΦs−Φw is located, (whereΦs

- the plasma-sheath potential drop as measured with respectto the center of discharge is
the point at which a sudden drop of the electric fieldE = −1/Ψ(Φ) is situated, andΦw

is the wall potential to be found self consistently from the particle flux balance). Due to
the symmetry of the problem, only half of the discharge should be considered. In seeking

Φ(x)

x = 0 x = Lx = −L

Φ(x)

(x, v)

Φ(x′)

(x′, v′) x

Φw

Φs

Fig. 1. Schematic diagram of the T&L model in one-dimensional (plane) geometry with potentialΦ(x). The
plasma center atx= 0, walls atx=±L. Φs is the potential of the sheath edge,Φw is the wall potential.

a solution to this type of problem, Tonks and Langmuir (T&L) found that the complete
formulation can be split into “plasma approximation,” where strict quasi-neutrality is as-
sumed and “sheath approximation”, where the electric field dominates. The corresponding
two regions of the plasma-wall transition layer are often referred to as “the presheath” and
“the Debye sheath” regions. T&L found approximate solutions for these two regions in
plane, cylindrical and spherical geometries with the assumption that the ions are generated
at rest. This is known as the ”cold” or ”singular” ion source scenario, unlike much more
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complex the ”warm” or ”regular” ion source case, which is thesubject of the present paper.
T&L’s “intuitive” approach involves splitting the plasma-sheath equation into two parts,
later rendered into a precise mathematical context recognized by Caruso and Cavaliere [6]
via employing the boundary layer theory by van Dyke[26]. Proceeding with this approach,
Harrison and Thompson (H&T) [9] upgraded the Tonks and Langmuir approximate solu-
tion to an exact analytic one. Self [23], however, announceda completenumericalsolution,
i.e., without the quasi-neutrality assumption, but still with a cold ion source.

The first attempt to tackle the plasma solution (ε = 0) with a regular (warm) ion source
(the neutral temperatureTn 6= 0) has been done by Emmert et al. [8]. They employed an
artificial ion source, prepared in advance to yield the Maxwellian ion distribution function.
Bissell and Johnson (B&J) [4], on the contrary,startedfrom the Maxwellian ion source,
and found a numerical solution, unfortunately rather an unreliable one which, in addition,
remained limited to a rather narrow range of ion source temperatures. Scheuer and Emmert
(S&E) [22] used a better kernel approximation enabling themto find a solution in a wider,
yet still limited range which did not cover enough ’warm’ ionsources, which is of high
importance to fusion application. Kos et al. [12] and Jelic et al [10], however, have recently
managed to employ the exact kernel instead of an approximateone in solving the plasma
problem with a ”warm” Maxwellian ion-source without any restriction, for ε = 0 andε 6= 0
respectively. With regard to the ion sources role, Harrisonand Thompson[9] (H&T) defined
the problem for a rather general ion source strength profileSi ∼ ne and solved analytically
basic casesβ = 0,1,2 with ne ∼ exp(βΦ), (with Φ the normalized local plasma potential),
where caseβ = 0 corresponds to the “flat” ion source spatial distribution (e.g., caused by an
electron beam or an external laser-caused ionization),β = 1 corresponds to the single-stage
electron-neutral impact ionization andβ = 2 assumes a two-stage ionization mechanism.
In addition, a solution has recently been found for warm ion sources [10].

The developments of the computational method [12] and the numerical simulation
method [3, 27] today open possibilities to deal with finiteε finite Tn case (see e.g., Refs. [21,
11] ). Apparently, a two-scale approach proves to be a less interesting one. By contrast,
the analytic determination of the plasma-sheath boundary is regarded of extreme impor-
tance in plasma investigations via numerical codes and practical applications. For example,
the validity of fusion-relevant codes dealing with the Scrape of Layer, like SOLPS [7] and
EDGE2D, is limited to the region bounded by a plasma-sheath surface at which the fluid
approach breaks. A well-defined boundary condition requires the employment of the fa-
mous Bohm criterion [5], i.e., its generalization [9]. The Bohm criterion is well elaborated
in its fluid and hydrodynamic counterparts forTn = 0, yet in the finite ion-source temper-
ature cases it is far from being proven even in the fluid approach. In this paper we show
the most advanced formulation of the Bohm criterion in the fluid approach based on new
formulation of the ion polytropic coefficient function [15,14]. Moreover, we demonstrate
that our formulation sufficiently defines the plasma-sheathboundary without invoking the
kinetic approach at all.
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2 Theoretical considerations

The general formulation of the problem as defined by Tonks andLangmuir (T&L) in
1929 [25] for plane-parallel geometry consists in simultaneously solving Boltzmann’s equa-
tion for the ion VDF,fi(x,v),

v
∂ fi
∂x

− e
mi

dΦ
dx

∂ fi
∂v

= Si(x,v) and − d2Φ
dx2 =

e
ε0
(ni −ne) , (2)

where the collisional source termSi(x,v) on the right-hand side is a function describing
the relevant microscopic physics involved in the model of interest, withx the Cartesian
space coordinate,v the particle velocity,e the positive elementary charge,mi the ion mass,
andΦ(x) the electrostatic potential at positionx), and Poisson’s equation for the potential,
respectively, whereε0 is the vacuum dielectric constant, andni,e are the ion and electron
densities, respectively, with additional assumptions andproper boundary conditions. We
introduce the normalized quantities of interest as follows:

eΦ
kTe

→ Φ ,
miv2

2kTe
→ v2 ,

x
L
→ x ,

ni,e

ne0
→ ni,e ,

Tn

Te
→ Tn ,

Ti,src

Te
→ Ti,src ,

Ti

Te
→ Ti ,

√
2cs0 fi
ne0

→ fi , SiL → Si , (3)

wherecs0 ≡
√

kTe/mi andL is any characteristic system length, (usually, the half-length of
the plane-parallel discharge). Eqs. (2) in the normalized forms read:

∂ fi
∂x

− dΦ
dx

∂ fi
(∂v2)

=
Si(x,v)

v
, and − ε2d2Φ

dx2 = ni −ne , (4)

respectively. Hereε ≡ λD/L (with the Debye lengthλD =
√

ε0kTe/ne0e2 andne0 the elec-
tron density at the center of the plasma) is the smallness parameter of the problem. Equa-
tion (4) shows that forε → 0 the quasi-neutrality condition holds up to the wall where an
infinitely thin sheath forms, characterized by infinite electric field. If, on the other hand,
“sheath scaling”x/λD → x is employed, the sheath becomes infinitely wide.

Assuming that the electron density is Boltzmann-distributedne= exp(Φ), the procedure
described in Ref. [13] leads to the solution in the form:

B
∫ 1

0
dx′ exp[Φ(x′)−Φ(x)]exp

[

1
2Tn

{Φ(x′)−Φ(x)}
]

K0

{

1
2Tn

|Φ(x′)−Φ(x)|
}

= 1− ε2exp(−Φ)
d2Φ
dx2

, (5)

with B emerging from the condition of the charge flux balance in the form [12]:

B=
1

2π

√

Temi

Tnme

n0

nav
exp

(

eΦw

kTe

)

, (6)
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with Φw the wall potential andnav the average ion density.
Note that Eq. (5) depends on configuration spacex. In the plasma-sheath problem we

assume that the potential profileΦ(x) is monotonic, so that the inverse functionx(Φ) is
monotonic as well, the mathematical rule:d2y/dx2 = −(d2x/dy2)/(dx/dy)3 holds. Then
the elegant form of Eq. (1) is obtained after interchanging the dependent and independent
variablesΨ(Φ′) = dx′/dΦ′ ≡ −1/E. In fact, this is the Bissell-Jonson approach, which
caused theme extreme trouble. Nevertheless, interchanging the dependent and independent
variables yields the B&J formula:

1
B
=
∫

Ψ(Φ′)exp

[(

1+
1

2Tn

)

(Φ−Φ′)

]

K0

(
∣

∣

∣

∣

Φ−Φ′

2Tn

∣

∣

∣

∣

)

dΦ′ . (7)

Once a numerical solution of above equation is obtained, it is straightforward (but not easy)
to calculate the ion velocity distribution, which in normalized variables in accordance to
B&J reads

fi(Φ(x),v) = B
∫

Φ′
Ψ(Φ′)exp(Φ′)

exp
[

−(v2− (Φ′−Φ))/Tn
]

√

v2− (Φ′−Φ)
dΦ′ . (8)

Furthermore, all the moments of ion VDF, i.e. the density (n=
∫

f (v)dv), directional veloc-
ity (u= 1

n

∫

f (v)vdv), and ion temperatureT =
∫ 1

n f (v)(v−u)2dv and all higher moments
like heat flux, energy flux etc., can be found at any location, and of course the quantity
< v−2 >= 1

n

∫

f (v)dv/v2 necessary for the calculation of the H&T plasma-sheath condi-
tion.

Finally, once the moments of the velocity distribution function are known, the special
quantity of our interest the polytropic coefficientγi(x) (or equivalentlyγi (Φ)) can be found
by using the expression:

γi = 1+
ni

Ti

dTi

dni
≡ 1+

ni

Ti

dTi/dΦ
dni/dΦ

. (9)

On the other hand, the purpose of our paper is to deal with hydrodynamic properties
at the plasma boundary, where a standard procedure of expanding the charge densityne−
ni in terms of the potentialΦ(x) near the ”infinitely distant” pointxs/L → ∞, Φs → 0,
where conditions(ne−ni)→ 0 anddΦ/dx→ 0 hold. Under these conditions the linearized
PoissoN equation takes the form

ε0

2

(

d2Φ
dx2

)2

=
1
2

d(ne−ni)

dΦ
Φ2 , (10)

from where it follows that the condition

d(ni −ne)

dΦ
≤ 0 (11)

must hold near the sheath boundary.
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Although it has been argued by Riemann [see e.g., Refs. [16, 17])] that whereas the
above expansion is valid in the fluid approach it is inapplicable in the kinetic approach,
where another expansion should be applied, for our present purposes it can be sufficiently
used as a universal one. We will proceed with the sheath analysis, employing it here further.
Then from the Vlasov equations:

v
∂ fi,e
∂x

∓ e
mi,e

dΦ
dx

∂ fi,e
∂v

= 0 , (12)

or, alternatively, from systems of fluid equations:

∂ (ni,eui,e)

∂x
= 0 ,

mi,eni,eui,e
∂ui,e

∂x
+ni,e

dΦ
dx

± γi,ekTi,e
∂ni,e

∂x
= 0 .

(13)

assumed to hold in the collisionless sheath region, respective pairs of equalities can be
obtained via

dni,e

dΦ
=± e

mi,e

∫

1
v

∂ fi,e
∂v

dv ,

dni,e

dΦ
=∓ eni,e

γi,ekTi,e−mi,eu2
i,e

,
(14)

which suffices for our present purpose, i.e., for the presentmodeling of the edge of a
strongly localized electric field region. Thus in the most general kinetic case the Harri-
son and Thompson [9] (H&T) generalization

∑
i,e

e
mi,e

∫

1
v

∂ fi,e
∂v

dv= ∑
i,e

e
mi,e

∫

fi,e
v2 dv≤ 0 (15)

of the Bohm [5] criterion should be employed, where alternative form with< v−2> can be
obtained after partial integration.

Typically, however, the function of the electron velocity distribution or at least the elec-
tron density profile is assumed to be known. Thus treating theion populations kinetically,
the generalized H&T criterion turns somewhat more explicit:

mi,e
(〈

v2
i

〉)−1 ≥ ene

(

dne

dΦ

)−1

, (16)

where the right-hand side should be calculated either kinetically from the known elec-
tron velocity distribution function or the electron density profile n(Φ). Here the term
Te,scr ≡ ene(dne/dΦ)−1 ??is known as the ”screening temperature” [18, 17]. In the case
of Maxwellian electrons the screening temperature coincides with the global electron tem-
perature uniformly valid in the whole discharge. Hence, if the ions are modeled in the fluid
approach, the criterion (11) takes the form:

miu
2
i ≥ γekTe+ γikTi = c2

s , (17)
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wherec2
s has the same structure as “classical” ion sound velocity. Innormalized variables

so we may write:
ui ≥

√

1+ γiTi . (18)

However, theessentialnovelty of the present work is thatγ may not be considered
as a constant (taking values 1, 5/3, or 3 for the isothermal, adiabatic flow with isotropic
pressure and 3 for the one-dimensional adiabatic flow), as presented in any classic textbook
on plasma physics, but that it is a constant which, moreover,assures that theexact equality
in the Bohm condition (18) takes place, rather than inequality (known as the “marginal
Bohm condition”). This means that the plasma sheath boundary, being a point of the electric
field singularity, is the “sonic” surface (Mach number equalto unity) according to Stengeby
and Allen’s hypothesis made in fluid theory [24] and Allen’s hypothesis argued for the
kinetic model. [2], both made on the basis of comparing the dispersion relations in the
limit of vanishing phase velocityω/k→ 0 and small wave vectorkλD ≪ 1 with the Bohm
criteria in both the fluid and kinetic approaches.

3 Results

Our interest here is Eq. (6) in the limit of vanishingε :

1
B
=

∫ 1

0
dx′ exp

[(

β +
1

2Tn

)

Φ(x′)−
(

1+
1

2Tn

)

Φ(x)

]

K0

(

1
2Tn

∣

∣Φ(x′)−Φ(x)
∣

∣

)

, (19)

where parameterβ characterizes the ionization mechanism distribution [10]and takes e.g.,
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Fig. 2. Potential profiles obtained for different ion source(neutral gas) temperatures. The ion temperatures at
the plasma sheath edge are indicated in parallel.

valueβ = 0 for uniformly distributed ion source andβ = 1 for the ion source proportional
to the electron density (see e.g. Jelic et al. 2009 [10]). Ourcode employs the piecewise
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Lagrangian interpolation of order 2 or 3 in the areas of mildΦ(x) gradients, supporting
iterations with high accuracy within wide ion-source temperature ranges, especially in the
limit Tn → 0, which is sensitive to instabilities due to the prolonged integration intervals
caused by 1/Tn singularity [see Fig. 2 presents only the potential profilesobtained for
β = 1 (while results obtained forβ = 0 are omitted, yet will be discussed at a later point) in
a wide range of ion source temperatures. With any of particular Tn, potential profiles start
at Φ = 0 and end atΦs independently of value ofβ . With exception of these end points the
pairs of curvesβ = 1 of β = 0 differ in all other points, reflecting the well-known property
of the T&L solution that the plasma solution is invariant with respect to the potential, but
is not invariant with respect to the spatial coordinate. An important fact to be noted is that
the numerically obtained curves forTn = 0.01 via our method excellent approximate the
exact analytic curves forTn = 0, so that for the sake of practicality they might be mutually
substituted.

For zero ion-source temperatureTn = 0, the exact solution holds in the range from 0
to Φs = −0.85403... (maximum of the Dawson function [1]FD(

√
z)), which gives the
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3

6 = -0.01
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 = -1
 = -2

f
i
(v)

v

T 
n
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Fig. 3. Ion velocity distribution functions at several positions in the discharge (dashed lines indicate VDF’s in
the sheath region).

system length of the discharge (see e.g., Riemann[19]). Fora comparison with normalized
system lengthL = 1, inverse functionΦ(z) can be numerically solved by finding the root
of z− x(Φ)/L0 = 0. Although Eq. (19) can be evaluated to arbitrary precisionto simulate
high grading near the sheath edge used in the warm case, the potential curve is positioned
at the following discrete positions

xi =

(

1−
(

1− i
np−1

)λ2
)λ1

, i = 0,1, . . . ,np−1 , (20)

where number of pointsnp and grading at endpointsλ1 andλ2 should be similar to those
used in warm caseTn > 0. Our curves in Fig. 2 are all normalized to the unit length toenable
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a comparison of the shapes. The important fact is that for anytemperature there is a value
of the plasma potentialΦs(Tn) for which the electric field becomes infinite. These points of
breaking quasi-neutrality are identified as the plasma sheath boundaries (as functions of the
ion source temperatures). According to the detailed results in Jelic et al. [10], the potential
drop |Φs(Tn)| decreases with increased temperatureTs.

While VDF for the cold ion-source is the Diracδ -function, for the finite ion-source
temperaturesTn > 0 a variety of VDFs are possible. For theγ-processing we used the
Maxwellian ion-source, as results were readily available with various grid setups, so we
could also test the grid invariance. The calculation of the potential profiles for the whole
temperature range and different grids took more than 700000processor hours. Note that in
Fig. 2 the ions e.g., “recycled” from very hot neutrals in fusion plasmas, are much “colder”
than the sources (see the temperature profiles in the figures bellow).

With known potential profiles the ion velocity distributions at any point of the discharge
can be obtained via e.g., the trajectory method (see e.g., Kos et al [12]). For the sake of
curiosity, we illustrate velocity distributions at several places in the discharge both in plasma
(solid lines) and the sheath (dashed lines) in Fig. 3 for a particular source temperatureTn =
1. It should be noted that calculating the ion velocity distributions can be facilitated through
a simple shift in the energy coordinate. In fact, calculation of ion velocity distributions at
an arbitrary high number of the positions is considerably less computationally demanding
and considerably less expensive than calculating the profiles, which requires huge CPU
resources. Finding the fluid quantities profiles is the next task to be done towards obtaining
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Fig. 4. Ion-temperature profiles for various ion-source temperatures.

the complete information necessary for closing the set of the data basis required for any
practical purposes. We do not show the ion density profiles since, by the definition of the
problem, they are identical to the electron density profiles. For illustration, Fig. 4 shows
the temperature profiles for several ion-source temperatures, wherefrom it is clear that the
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final ion temperatures are considerably bellow the ion source temperatures. The knees of
the temperature profiles correspond to the points of the plasma-sheath boundaries (there is
an essential difference in the quantity of profiles with small temperatures, as discussed in
detail in Ref. [15]). The essential results for this paper are illustrated in Fig. 5, where we
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Fig. 5. Ion polytropic coefficient function profiles for different ion-source temperatures. Small circles indicate
the plasma boundaries (Φs = -0.854, -0.825, -0.699, -0.6249, -0.501, -0.42, -0.341) for each particular ion-
source temperature (Tn = 0, 0.05, 0.5, 1, 3, 7, 20).

0.0 -0.2 -0.4 -0.6 -0.8 -1.0
0

1

2

3

4

 c
s
2=1+

i
T

i

 u
i
2

T
n
 = 20

T
n
 = 7 T

n
 = 3

T
n
 = 1 T

n
 = 0.5

u
i
2

c
s
2

T
n
 = 0

Fig. 6. Profiles of the square of the ion directional velocity(u2
i - thick lines) and the square of the ion-sound

velocityc2
s = 1+ γiTi

show several profiles of the ion polytropic coefficient functions for several ion sources. The
limiting case obtained in our previous works forTn = 0 is marked by a thick line. Sharp
characteristic peak appears in this case due to the inflection point of the temperature profile
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for cold ion source forTn ≃ 0 as discussed in Refs. [15, 20]. It is important to remember
the shape and the level of the bold curve joining the values ofγi ’s in the large range of ion
source temperatures. Obviously, it is difficult to talk about any particular choice in which
γi takes particular values of e.g., either 1 or 3. The values characterizing the plasma-sheath
positions are marked via values ofΦs for each particularTn used in this example.

The above-mentioned results seem to be at least qualitatively known from the cited
literature. The key result of the present work, however, is illustrated in Fig. 6 as follows.
Profiles of the square of the ion directional velocityu2

i (Φ) are presented in Fig. 6 (thick
lines) together with the squares of the ion-sound velocityc2

s(Φ) = 1+ γiTi profiles (thin
lines). For any particular temperatureTn the points ofu2

i (Φs) are marked with full circles.
It is obvious that the circles coincide with the intersection points (u2

i = c2
s). This statement

is valid with certain accuracy caused by ad hoc smoothing derivativesdTi/dΦ necessary
for calculation of smoothγi via formula Eq. (9). Fig. 6 appears to be a rather spectacular
one since the involvement of the local polytropic coefficient function into the plasma-sheath
theory as a substantially relevant quantity is a considerable improvement of the formula for
the Bohm criterion not only in the sense of quantitative determination of the Bohm velocity,
but also substantially from the point of view of the basic principles of plasma physics.

4 Conclusion

The authors take the freedom to claim that the results presented in the present work are
both surprising and superior to the classic results as presented in standard course-books on
basic plasma physics or in highly refined available plasma-sheath theories. Firstly, we con-
firm that the Bohm criterion with the marginal (equality) sign holds at the plasma boundary
provided the exactlocal value of ion polytropic coefficient function is known. Secondly,
it turns out that once the local polytropic coefficient function is known,no kinetic crite-
rion such as Harrison and Thompson’s is needed, since these kinetic formulations have no
measurable physically relevant plasma parameter. Finally, since our criterion with local
polytropic coefficient appears to be correct, it turns out that any fluid formulation known
from published works with constantγ is anoversimplificationof the Nature in comparison
with the present model, despite the seeming structural similarities in the formulas. The task
remaining to be done in future is to possibly show viaanalyticarguments that our formula
is a universal one irrespective of the details of the discharge such as the shape of the ion
velocity distribution source, ionization mechanism, the geometry of the discharge etc.
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