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Deformed exponentials, operators and modeling population
growth

Sladjana D. Marinković, Predrag M. Rajković, Miomir S. Stanković

Abstract: In this paper we present a one–parameter deformation of exponential function and
appropriate mathematical tools, such as deformed addition or deformed differential operators.
In particular, we focus on the differential and difference properties of the introduced functions
and related operators. Based on this we offer new model of population growth.
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1 Introduction

In the recent development of science, solving concrete real problems leaded to various gen-
eralizations and deformations of exponential function. One–parameter deformations have
been proposed in the context of non-extensive statistic mechanics [1, 2], relativistic statisti-
cal theory [3] and quantum–group theory [4]. In [5] a variant of the deformed exponential
function of two variables is introduced using a formal mathematical approach and men-
tioned generalizations and deformations can be viewed as the its special cases. This func-
tion and the corresponding operators make the environment for the study of new classes
of polynomials [6] or generalized polynomials [7]. On the other hand, some generaliza-
tions of exponential function are presented in [8] in order to find applications in population
dynamics [9, 10].

The paper is organized as follows. After section devoted to introduction, we present the
deformed exponential function of two variables in the second section. In the third section,
we observe some difference and differential operators and examine their relationship to the
presented function. Finally, in the last section, we focus on its application in growth models
in the population dynamics.
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2 The deformed exponential functions

At the start we will present a deformation of exponential function of two variables depend-
ing of a parameter h ∈ R\{0}, which is introduced in [5].

Let I = (−∞,−1/h) for h < 0 or I = (−1/h,+∞) for h > 0. The deformed exponential
function (x,y) 7→ eh(x,y) is defined by

eh(x,y) = (1+hx)y/h (x ∈ I, y ∈ R). (1)

It is obvious that
lim
h→0

eh(x,y) = exy .

If h = 1−q (q ̸= 1) and y = 1, the function (1) becomes

e1−q(x,1) =
(
1+(1−q)x

)1/(1−q)
,

i.e., e1−q(x,1) = ex
q, where ex

q is Tsallis q–exponential function [1] defined by

ex
q =


(
1+(1−q)x

)1/(1−q)
, 1+(1−q)x > 0 ,

0 , otherwise,
(x ∈ R).

If h = p−1 (p ̸= 1) and x = 1, the function (1) becomes

ep−1(1,y) = py/(p−1),

i.e. function considered for a generalization of the classical exponential function in the
context of quantum group formalism [11].

Notice that function (1) can be written in the form

eh(x,y) = exp
( y

h
ln(1+hx)

)
.

Hence, similar as in [12], we can use cylinder transformation as deformation function x 7→
{x}h by

{x}h =
1
h

ln(1+hx) = ln(1+hx)1/h (x ∈ I) . (2)

Thus, the following holds:
eh(x,y) = e{x}h y . (3)

We can show that the function (1) holds on some basic properties of exponential func-
tion.

Proposition 2.1 For x ∈ I and y,y1,y2 ∈ R the following holds:

eh(x,y)> 0, eh(0,y) = eh(x,0) = 1,

e−h(x,y) = eh(−x,−y), eh(x,y1 + y2) = eh(x,y1)eh(x,y2).
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Notice that the additional property is true with respect to the second variable only.
However, with respect to the first variable, the following holds:

eh(x1,y)eh(x2,y) = eh
(
x1 + x2 +hx1x2,y

)
.

This equality suggests us to introduce a generalization of the sum operation

x1⊕h x2 = x1 + x2 +hx1x2 . (4)

Such generalized addition operator was considered in some papers and books (see, for ex-
ample, [2] or [12]). This operation is commutative, associative and zero is its neutral. For
x ̸=−1/h, the ⊖h–inverse exists as

⊖hx =
−x

1+hx

and x⊕h (⊖hx) = 0 is valid. Hence, (I,⊕h) is an abelian group. In this way, the ⊖h–
subtraction can be defined by

x1⊖h x2 = x1⊕h (⊖hx2) =
x1− x2

1+hx2

(
x2 ̸=−

1
h

)
. (5)

With respect to (2), we can prove the next equality for x1,x2 ∈ I:

{x1}h +{x2}h = {x1⊕h x2}h. (6)

Really,

{x1}h +{x2}h =
1
h

ln
(
1+h(x1 + x2 +hx1x2)

)
=

1
h

ln
(
1+h(x1⊕h x2)

)
= {x1⊕h x2}h.

Proposition 2.2 For x1,x2 ∈ I and y ∈ R, the following is valid:

eh(x1⊕h x2,y) = eh(x1,y)eh(x2,y),

eh(x1⊖h x2,y) = eh(x1,y)eh(x2,−y).

In order to find the expansions of the deformed exponential function, we introduce
generalized backward integer power given by

z(0,h) = 1, z(n,h) =
n−1

∏
k=0

(z− kh) (n ∈ N, h ∈ R\{0}).

Proposition 2.3 For function (x,y) 7→ eh(x,y), the following representations hold:

eh(x,y) =
∞

∑
n=0

{x}n
h yn

n!
, eh(x,y) =

∞

∑
n=0

xny(n,h)

n!
(|hx|< 1) . (7)
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Proof. The first representation can be obtained from (3) and the expansion of exponential
function. The second one is based on expansion

(1+hx)y/h =
∞

∑
n=0

y/h
n hnxn (|hx|< 1, y ∈ R)

and the relation (
y/h
n

)
=

y(y−h) · · ·
(
y− (n−1)h

)
hn n!

=
y(n,h)

hn n!
. 2 (8)

Following the generalization of exponential function x 7→ ex to Laguerre–type exponen-
tial (or, shortly, L–exponential) functions

x 7→ ek(x) =
∞

∑
n=0

xn

(n!)k (k = 1,2, . . .), (9)

presented in [8] and explored in [9, 10], we can define Laguerre–type deformed exponential
or deformed L–exponential function (x,y) 7→ eL

h(x,y) as

eL
h(x,y) =

∞

∑
n=0

{x}n
h yn

(n!)2 (x ∈ I, y ∈ R). (10)

3 The deformed difference and differential
operators

The introduced functions have some eigenvalue properties with respect to a few difference
and differential operators, such like the exponential function has corresponding property
with respect to the ordinary derivative D.

Firstly, let us recall that h–difference operator is

∆z,h f (z) =
f (z+h)− f (z)

h
.

Further, deformed h–differential and h–derivative according to operation (4) is defined
by means of (see [13])

dhz = lim
u→z

z⊖h u, Dz,h f (z) =
d f (z)
dhz

= lim
u→z

f (z)− f (u)
z⊖h u

.

With respect to (5) we have

Dz,h f (z) =
d f (z)
dhz

= lim
u→z

f (z)− f (u)
z−u

1+hu

= (1+hz)
d f (z)

dz
. (11)

The h–derivative holds on the property of linearity and the product rule:

Dz,h
(
α f (z)+βg(z)

)
= αDz,h f (z)+βDz,hg(z),

Dz,h
(

f (z)g(z)
)
= f (z)Dz,hg(z)+g(z)Dz,h f (z).
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It is worth to notice that the following equality is valid:

Dx,h ({x}n
h) = n{x}n−1

h (n ∈ N0) . (12)

For functions defined on I we define the operator

D−1
z,h f (z) =

∫ z

0

f (t)
1+ht

dt, (13)

which is, in some sense, the inverse operator to operator Dz,h. It is easy to prove that

D−n
x,h f (x) =

(
D−1

x,h

)n f (x) =
1

(n−1)!

∫ x

0

(
{x}h−{t}h

)n−1

1+ht
f (t) dt .

Also, let us noting that

D−1
x,h ({x}

n
h) =

{x}n+1
h

n+1
(n ∈ N0) . (14)

It would be useful for further work to denote a simple multiplicative operator defined
by

Xh f (x) = {x}h f (x) = ln(1+hx)1/h f (x). (15)

Finally, we define the deformed Laguerre derivative by

DL
x,h f (x) = (Dx,hXhDx,h) f (x) =

(
d

dhx
{x}h

d
dhx

)
f (x)

= (1+hx)
d
dx

(
ln(1+hx)1/h(1+hx)

d f (x)
dx

)
.

This operator generalizes the Laguerre derivative DxD [8], which appears in mathemati-
cal modelling of some phenomena in viscous fluids and the oscillating chain in mechanics.
Also, Laguerre derivative is used for modelling in population dynamic [10, 9], what encour-
aged the authors to offer some new models of population growth.

The eigenvalue properties of mentioned functions and operators are given by the next
statements.

Proposition 3.1 [5] The function y 7→ eh(x,y) is the eigenfunction of difference operator
∆y,h with eigenvalue x, i.e. the following holds:

∆y,h eh(x,y) = x eh(x,y).

Proposition 3.2 [5] The function eh(x,y) is the eigenfunction of the operators Dx,h and
∂
∂y

with eigenvalues y and {x}h respectively, i.e.:

Dx,h eh(x,y) = y eh(x,y),
∂
∂y

eh(x,y) = {x}h eh(x,y).
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Proposition 3.3 The function x 7→ eL
h(x,y) is the eigenfunction of the operator DL

x,h with
eigenvalue y, i.e. the following holds:

DL
x,h eL

h(x,y) = y eL
h(x,y).

Proof. From the definitions of the deformed L–exponential function and equality (12) we
have

DL
x,h eL

h(x,y) = (Dx,hXhDx,h)

(
∞

∑
n=0

{x}n
h yn

(n!)2

)
= Dx,h

(
{x}h

∞

∑
n=1

n{x}n−1
h yn

(n!)2

)

=
∞

∑
n=1

n2{x}n−1
h yn

(n!)2 =
∞

∑
n=0

{x}n
h yn

(n!)2 . 2

In the sequel we will give some differential properties of studied functions and operators
[7].

Theorem 3.1 For x ∈ I, y ∈ R and k,n ∈ N0 the following holds:

Dk
x,h

(
{x}n

h

)
= k!

(
n
k

)
{x}n−k

h , (16)

D−k
x,h(1) =

{x}k
h

k!
,

(
1− yD−1

x,h

)−1
(1) = eh(x,y).

Proof. The first two equalities follows from the definitions (2), (11) and (13). For third one,
we recall the expansion (7) and the formal geometric series:

eh(x,y) =
∞

∑
n=0

{x}n
hyn

n!
=

∞

∑
n=0

ynD−n
x,h(1) =

∞

∑
n=0

(
yD−1

x,h

)n
(1)

=
(

1− yD−1
x,h

)−1
(1). 2

Theorem 3.2 For n ∈ N0 the following is valid:

(Dx,hXhDx,h)
n = Dn

x,hXn
h Dn

x,h .

Proof. The statement can be proven by mathematical induction with some suitable manip-
ulations. 2

Theorem 3.3 For x ∈ I, y ∈ R and k,n ∈ N0, the following is valid:

(Dx,hXhDx,h)eh(x,y) = y
(
1+ yXh

)
eh(x,y) , (17)

(Dx,hXhDx,h)
k
(
{x}n

h
n!

)
= k!

(
n
k

)
{x}n−k

h
(n− k)!

. (18)
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Proof. With respect to Proposition 3.2, equality (16) and the product rule for Dx,h, we have

(Dx,hXhDx,h)eh(x,y) = Dx,h
(
{x}hyeh(x,y)

)
= y
(
1+ y{x}h

)
eh(x,y),

wherefrom we get the operational inscription. The second equality follows from repeated
application of (16). 2

At last, we refer to the M and P operators as the descending (or lowering) and ascending
(or raising) operators associated with the polynomial set {qn}n∈N0 if

M(qn) = nqn−1 , P(qn) = qn+1 .

Then, the polynomial set {qn}n∈N0 is called quasi-monomial with respect to the operators
M and P (see [8, 10]).

Considering (12) and (15), it is easy to see that Dx,h and Xh are the descending and
ascending operators associated with the set of generalized monomial {x}n

h (n ∈ N0). Also,
with respect to (18) and (14), DL

x,h = Dx,hXhDx,h and D−1
x,h are the descending and ascending

operators associated with the set of generalized monomial
{x}n

h
n!

(n ∈ N0).

4 Modelling population growth

In this section, we will note the presence and the potential use of the deformed exponentials
in the growth models in the frameworks of population dynamics.

Let us consider the number N(t) of population individuals at the time t with initial
value N(0) = N0. The model assumes that the increment of population in time period δ t is
proportional to N(t), i.e. the following difference equation is satisfied

∆t,δ tN(t) = rN(t),

where r is called the intrinsic growth rate. According to Proposition 3.1, the function
t 7→ eδ t(r, t) is an eigenfunction of the difference operator ∆t,δ t with eigenvalue r. Hence
the solution of this equation can be expressed by the deformed exponential function:

N(t) = N0eδ t(r, t).

When δ t → 0, we get the Malthus model in population dynamics described by the
equation

d
dt

N(t) = rN(t), N(0) = N0,

with the solution
N(t) = N0ert .

In [9, 10], Laguerre–type derivative DttDt is used instead the ordinary derivative Dt .
The obtained equation,

d
dt

t
d
dt

N(t) = rN(t), N(0) = N0, N′(0) = N1 = rN0,
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describes the L–Malthus model. In this case, the population growth increases according to
the L–exponential function defined by (9):

N(t) = N0e1(rt) =
∞

∑
n=0

rn tn

(n!)2 .

Thus, the relevant increase is slower with respect to the classical Malthus model.
If we substitute in classical Malthus model Dt with a deformed derivative Dh,t , we get

deformed Malthus model described by the following equation:

d
dht

N(t) = rN(t), N(0) = N0 .

According to Proposition 3.2, its solution is the deformed exponential function:

N(t) = N0eh(t,r) = N0(1+ht)r/h.

With an appropriate choice of the constant h > 0, we can obtain an arbitrary level of the
population growth increase.

Example. We will test our considerations on the world population N(t) from the year 1965.
till 2010. with data collected during 5 years periods, given in Table 1.

Table 1: THE WORLD POPULATION

Year 1965 1970 1975 1980 1985

N(t) (Billions) 3.346 3.708 4.087 4.454 4.850

Year 1990 1995 2000 2005 2010

N(t) (Billions) 5.276 5.686 6.079 6.449 6.870

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year0

2

4

6

8

Population

àà

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year0

2

4

6

8

Population

Figure 1: The solutions of Malthus, L–Malthus and deformed Malthus models of growth of
world population

Let us compare the results obtained by deformed Malthus model with those obtained
by classical and L–Malthus model given in [9]. In the left part of Figure 1, the upper bold–
emphasized function is N(t) = N0ert , approximation provided by the Malthus model, and
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the lower is N(t) = N0e1(rt) provided by the L–Malthus model, without trial to do any
prognosis for the future. The other curves are graphics of possible solutions of deformed
Malthus model N(t) = N0eh(t,r) for different values of parameter h = 0(0.015)0.15.

In our model, we estimate h by the data from 1975. and we got hoptimum = 0.0838058.
Its graphics and exact data were shown on the right part of Figure 1. Here, the maximal
relative error is 0.6%. We are able to give prognosis that at the end of 2013. there will be
7 169 359 000 people, and in 2015. world population will be 7 341 754 000.
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